Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Sep 2;126(6):1509–1526. doi: 10.1083/jcb.126.6.1509

Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells

PMCID: PMC2290958  PMID: 8089182

Abstract

MDCKII cells differentiate into a simple columnar epithelium when grown on a permeable support; the monolayer is polarized for transport and secretion. Individual cells within the monolayer continue to divide at a low rate without disturbing the function of the epithelium as a barrier to solutes. This presents an interesting model for the study of mitosis in a differentiated epithelium which we have investigated by confocal immunofluorescence microscopy. We monitored the distribution of microtubules, centrioles, nucleus, tight junctions, and plasma membrane proteins that are specifically targeted to the apical and basolateral domains. The stable interphase microtubule cytoskeleton was rapidly disassembled at prophase onset and reassembled at cytokinesis. As the interphase microtubules disassembled at prophase, the centrioles moved from their interphase position at the apical membrane to the nucleus and acquired the ability to organize microtubule asters. Orientation of the spindle parallel to the plane of the monolayer occurred between late prophase and metaphase and persisted through cytokinesis. The cleavage furrow formed asymmetrically perpendicular to the plane of the monolayer initiating at the basolateral side and proceeding to the apical domain. The interphase microtubule network reformed after the centrioles migrated from the spindle poles to resume their interphase apical position. Tight junctions (ZO-1), which separate the apical from the basolateral domains, remained assembled throughout all phases of mitosis. E-cadherin and a 58-kD antigen maintained their basolateral plasma membrane distributions, and a 114- kD antigen remained polarized to the apical domain. These proteins were useful for monitoring the changes in shape of the mitotic cells relative to neighboring cells, especially during telophase when the cell shape changes dramatically. We discuss the changes in centriole position during the cell cycle, mechanisms of spindle orientation, and how the maintenance of polarized plasma membrane domains through mitosis may facilitate the rapid reformation of the polarized interphase cytoplasm.

Full Text

The Full Text of this article is available as a PDF (7.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacallao R., Antony C., Dotti C., Karsenti E., Stelzer E. H., Simons K. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol. 1989 Dec;109(6 Pt 1):2817–2832. doi: 10.1083/jcb.109.6.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balcarova-Ständer J., Pfeiffer S. E., Fuller S. D., Simons K. Development of cell surface polarity in the epithelial Madin-Darby canine kidney (MDCK) cell line. EMBO J. 1984 Nov;3(11):2687–2694. doi: 10.1002/j.1460-2075.1984.tb02194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartles J. R., Hubbard A. L. Preservation of hepatocyte plasma membrane domains during cell division in situ in regenerating rat liver. Dev Biol. 1986 Nov;118(1):286–295. doi: 10.1016/0012-1606(86)90095-3. [DOI] [PubMed] [Google Scholar]
  4. Bjerknes M. Physical theory of the orientation of astral mitotic spindles. Science. 1986 Dec 12;234(4782):1413–1416. doi: 10.1126/science.3787253. [DOI] [PubMed] [Google Scholar]
  5. Brändli A. W., Parton R. G., Simons K. Transcytosis in MDCK cells: identification of glycoproteins transported bidirectionally between both plasma membrane domains. J Cell Biol. 1990 Dec;111(6 Pt 2):2909–2921. doi: 10.1083/jcb.111.6.2909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bré M. H., Kreis T. E., Karsenti E. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules. J Cell Biol. 1987 Sep;105(3):1283–1296. doi: 10.1083/jcb.105.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buendia B., Bré M. H., Griffiths G., Karsenti E. Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. J Cell Biol. 1990 Apr;110(4):1123–1135. doi: 10.1083/jcb.110.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buendia B., Draetta G., Karsenti E. Regulation of the microtubule nucleating activity of centrosomes in Xenopus egg extracts: role of cyclin A-associated protein kinase. J Cell Biol. 1992 Mar;116(6):1431–1442. doi: 10.1083/jcb.116.6.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ceriotti A., Colman A. Protein transport from endoplasmic reticulum to the Golgi complex can occur during meiotic metaphase in Xenopus oocytes. J Cell Biol. 1989 Oct;109(4 Pt 1):1439–1444. doi: 10.1083/jcb.109.4.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cohen E., Binet S., Meininger V. Ciliogenesis and centriole formation in the mouse embryonic nervous system. An ultrastructural analysis. Biol Cell. 1988;62(2):165–169. [PubMed] [Google Scholar]
  11. FUJITA S. Kinetics of cellular proliferation. Exp Cell Res. 1962 Oct;28:52–60. doi: 10.1016/0014-4827(62)90311-7. [DOI] [PubMed] [Google Scholar]
  12. Ferguson D. J. An ultrastructural study of mitosis and cytokinesis in normal 'resting' human breast. Cell Tissue Res. 1988 Jun;252(3):581–587. doi: 10.1007/BF00216645. [DOI] [PubMed] [Google Scholar]
  13. Fishkind D. J., Wang Y. L. Orientation and three-dimensional organization of actin filaments in dividing cultured cells. J Cell Biol. 1993 Nov;123(4):837–848. doi: 10.1083/jcb.123.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Franke W. W., Grund C., Kuhn C., Jackson B. W., Illmensee K. Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation. 1982;23(1):43–59. doi: 10.1111/j.1432-0436.1982.tb01266.x. [DOI] [PubMed] [Google Scholar]
  15. Gelfand V. I., Bershadsky A. D. Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol. 1991;7:93–116. doi: 10.1146/annurev.cb.07.110191.000521. [DOI] [PubMed] [Google Scholar]
  16. Gumbiner B. M. Breaking through the tight junction barrier. J Cell Biol. 1993 Dec;123(6 Pt 2):1631–1633. doi: 10.1083/jcb.123.6.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gumbiner B., Simons K. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol. 1986 Feb;102(2):457–468. doi: 10.1083/jcb.102.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hyman A. A. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J Cell Biol. 1989 Sep;109(3):1185–1193. doi: 10.1083/jcb.109.3.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hyman A. A., White J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol. 1987 Nov;105(5):2123–2135. doi: 10.1083/jcb.105.5.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jinguji Y., Ishikawa H. Electron microscopic observations on the maintenance of the tight junction during cell division in the epithelium of the mouse small intestine. Cell Struct Funct. 1992 Feb;17(1):27–37. doi: 10.1247/csf.17.27. [DOI] [PubMed] [Google Scholar]
  21. Joshi H. C. Gamma-tubulin: the hub of cellular microtubule assemblies. Bioessays. 1993 Oct;15(10):637–643. doi: 10.1002/bies.950151002. [DOI] [PubMed] [Google Scholar]
  22. Karsenti E. Microtubule dynamics: severing microtubules in mitosis. Curr Biol. 1993 Apr 1;3(4):208–210. doi: 10.1016/0960-9822(93)90334-k. [DOI] [PubMed] [Google Scholar]
  23. Kreiner T., Moore H. P. Membrane traffic between secretory compartments is differentially affected during mitosis. Cell Regul. 1990 Apr;1(5):415–424. doi: 10.1091/mbc.1.5.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lamprecht J. Symmetric and asymmetric cell division in rat corneal epithelium. Cell Tissue Kinet. 1990 May;23(3):203–216. doi: 10.1111/j.1365-2184.1990.tb01116.x. [DOI] [PubMed] [Google Scholar]
  25. Lutz D. A., Hamaguchi Y., Inoué S. Micromanipulation studies of the asymmetric positioning of the maturation spindle in Chaetopterus sp. oocytes: I. Anchorage of the spindle to the cortex and migration of a displaced spindle. Cell Motil Cytoskeleton. 1988;11(2):83–96. doi: 10.1002/cm.970110202. [DOI] [PubMed] [Google Scholar]
  26. Lütcke H., Scheele G. A., Kern H. F. Time course and cellular site of mitotic activity in the exocrine pancreas of the rat during sustained hormone stimulation. Cell Tissue Res. 1987 Feb;247(2):385–391. doi: 10.1007/BF00218320. [DOI] [PubMed] [Google Scholar]
  27. Mack G., Rattner J. B. Centrosome repositioning immediately following karyokinesis and prior to cytokinesis. Cell Motil Cytoskeleton. 1993;26(3):239–247. doi: 10.1002/cm.970260307. [DOI] [PubMed] [Google Scholar]
  28. McNally F. J., Vale R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell. 1993 Nov 5;75(3):419–429. doi: 10.1016/0092-8674(93)90377-3. [DOI] [PubMed] [Google Scholar]
  29. Mogensen M. M., Tucker J. B. Evidence for microtubule nucleation at plasma membrane-associated sites in Drosophila. J Cell Sci. 1987 Aug;88(Pt 1):95–107. doi: 10.1242/jcs.88.1.95. [DOI] [PubMed] [Google Scholar]
  30. Mogensen M. M., Tucker J. B., Stebbings H. Microtubule polarities indicate that nucleation and capture of microtubules occurs at cell surfaces in Drosophila. J Cell Biol. 1989 Apr;108(4):1445–1452. doi: 10.1083/jcb.108.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moskalewski S., Thyberg J. Synchronized shift in localization of the Golgi complex and the microtubule organizing center in the terminal phase of cytokinesis. J Submicrosc Cytol Pathol. 1992 Jul;24(3):359–370. [PubMed] [Google Scholar]
  32. Muresan V., Joshi H. C., Besharse J. C. Gamma-tubulin in differentiated cell types: localization in the vicinity of basal bodies in retinal photoreceptors and ciliated epithelia. J Cell Sci. 1993 Apr;104(Pt 4):1229–1237. doi: 10.1242/jcs.104.4.1229. [DOI] [PubMed] [Google Scholar]
  33. Palmer R. E., Sullivan D. S., Huffaker T., Koshland D. Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J Cell Biol. 1992 Nov;119(3):583–593. doi: 10.1083/jcb.119.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parton R. G., Prydz K., Bomsel M., Simons K., Griffiths G. Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J Cell Biol. 1989 Dec;109(6 Pt 2):3259–3272. doi: 10.1083/jcb.109.6.3259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rappaport R. Establishment of the mechanism of cytokinesis in animal cells. Int Rev Cytol. 1986;105:245–281. doi: 10.1016/s0074-7696(08)61065-7. [DOI] [PubMed] [Google Scholar]
  36. Rattner J. B., Berns M. W. Centriole behavior in early mitosis of rat kangaroo cells (PTK2). Chromosoma. 1976 Mar 10;54(4):387–395. doi: 10.1007/BF00292817. [DOI] [PubMed] [Google Scholar]
  37. Rizzolo L. J., Joshi H. C. Apical orientation of the microtubule organizing center and associated gamma-tubulin during the polarization of the retinal pigment epithelium in vivo. Dev Biol. 1993 May;157(1):147–156. doi: 10.1006/dbio.1993.1119. [DOI] [PubMed] [Google Scholar]
  38. Rodriguez-Boulan E., Nelson W. J. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989 Aug 18;245(4919):718–725. doi: 10.1126/science.2672330. [DOI] [PubMed] [Google Scholar]
  39. Roos U. P. Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. Chromosoma. 1976 Mar 10;54(4):363–385. doi: 10.1007/BF00292816. [DOI] [PubMed] [Google Scholar]
  40. Sandig M., Kalnins V. I. Reorganization of circumferential microfilament bundles in retinal epithelial cells during mitosis. Cell Motil Cytoskeleton. 1990;17(2):133–141. doi: 10.1002/cm.970170208. [DOI] [PubMed] [Google Scholar]
  41. Simons K., Wandinger-Ness A. Polarized sorting in epithelia. Cell. 1990 Jul 27;62(2):207–210. doi: 10.1016/0092-8674(90)90357-k. [DOI] [PubMed] [Google Scholar]
  42. Smart I. H. Changes in location and orientation of mitotic figures in mouse oesophageal epithelium during the development of stratification. J Anat. 1970 Jan;106(Pt 1):15–21. [PMC free article] [PubMed] [Google Scholar]
  43. Smart I. H. Variation in the plane of cell cleavage during the process of stratification in the mouse epidermis. Br J Dermatol. 1970 Mar;82(3):276–282. doi: 10.1111/j.1365-2133.1970.tb12437.x. [DOI] [PubMed] [Google Scholar]
  44. Soler A. P., Laughlin K. V., Mullin J. M. Effects of epidermal growth factor versus phorbol ester on kidney epithelial (LLC-PK1) tight junction permeability and cell division. Exp Cell Res. 1993 Aug;207(2):398–406. doi: 10.1006/excr.1993.1207. [DOI] [PubMed] [Google Scholar]
  45. Souter E., Pypaert M., Warren G. The Golgi stack reassembles during telophase before arrival of proteins transported from the endoplasmic reticulum. J Cell Biol. 1993 Aug;122(3):533–540. doi: 10.1083/jcb.122.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stearns T., Evans L., Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991 May 31;65(5):825–836. doi: 10.1016/0092-8674(91)90390-k. [DOI] [PubMed] [Google Scholar]
  47. Strome S. Determination of cleavage planes. Cell. 1993 Jan 15;72(1):3–6. doi: 10.1016/0092-8674(93)90041-n. [DOI] [PubMed] [Google Scholar]
  48. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  49. Tamaki H., Yamashina S. Changes in cell polarity during mitosis in rat parotid acinar cells. J Histochem Cytochem. 1991 Aug;39(8):1077–1087. doi: 10.1177/39.8.1856456. [DOI] [PubMed] [Google Scholar]
  50. Tucker J. B., Paton C. C., Richardson G. P., Mogensen M. M., Russell I. J. A cell surface-associated centrosomal layer of microtubule-organizing material in the inner pillar cell of the mouse cochlea. J Cell Sci. 1992 Jun;102(Pt 2):215–226. doi: 10.1242/jcs.102.2.215. [DOI] [PubMed] [Google Scholar]
  51. Vorobjev I. A., Chentsov YuS Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol. 1982 Jun;93(3):938–949. doi: 10.1083/jcb.93.3.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Warren G. Membrane partitioning during cell division. Annu Rev Biochem. 1993;62:323–348. doi: 10.1146/annurev.bi.62.070193.001543. [DOI] [PubMed] [Google Scholar]
  53. Waters J. C., Cole R. W., Rieder C. L. The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster. J Cell Biol. 1993 Jul;122(2):361–372. doi: 10.1083/jcb.122.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zackson S. L. Cell lineage, cell-cell interaction, and segment formation in the ectoderm of a glossiphoniid leech embryo. Dev Biol. 1984 Jul;104(1):143–160. doi: 10.1016/0012-1606(84)90044-7. [DOI] [PubMed] [Google Scholar]
  55. Zeligs J. D., Wollman S. H. Mitosis in rat thyroid epithelial cells in vivo. II. Centrioles and pericentriolar material. J Ultrastruct Res. 1979 Feb;66(2):97–108. doi: 10.1016/s0022-5320(79)90127-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES