Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Sep 2;126(6):1455–1464. doi: 10.1083/jcb.126.6.1455

Microtubule dynamics in fish melanophores

PMCID: PMC2290964  PMID: 8089178

Abstract

We have studied the dynamics of microtubules in black tetra (Gymnocorymbus ternetzi) melanophores to test the possible correlation of microtubule stability and intracellular particle transport. X- rhodamine-or caged fluorescein-conjugated tubulin were microinjected and visualized by fluorescence digital imaging using a cooled charge coupled device and videomicroscopy. Microtubule dynamics were evaluated by determining the time course of tubulin incorporation after pulse injection, by time lapse observation, and by quantitation of fluorescence redistribution after photobleaching and photoactivation. The time course experiments showed that the kinetics of incorporation of labeled tubulin into microtubules were similar for cells with aggregated or dispersed pigment with most microtubules becoming fully labeled within 15-20 min after injection. Quantitation by fluorescence redistribution after photobleaching and photoactivation confirmed that microtubule turnover was rapid in both states, t1/2 = 3.5 +/- 1.5 and 6.1 +/- 3.0 min for cells with aggregated and dispersed pigment, respectively. In addition, immunostaining with antibodies specific to posttranslationally modified alpha-tubulin, which is usually enriched in stable microtubules, showed that microtubules composed exclusively of detyrosinated tubulin were absent and microtubules containing acetylated tubulin were sparse. We conclude that the microtubules of melanophores are very dynamic, that their dynamic properties do not depend critically on the state of pigment distribution, and that their stabilization is not a prerequisite for intracellular transport.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arregui C., Barra H. S. Tyrosination state of tubulin and the activity of tubulin:tyrosine ligase and tubulin carboxypeptidase in the developing retina of the chick. J Neurochem. 1989 Jun;52(6):1708–1713. doi: 10.1111/j.1471-4159.1989.tb07248.x. [DOI] [PubMed] [Google Scholar]
  2. Bacallao R., Antony C., Dotti C., Karsenti E., Stelzer E. H., Simons K. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol. 1989 Dec;109(6 Pt 1):2817–2832. doi: 10.1083/jcb.109.6.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barra H. S., Arce C. A., Argaraña C. E. Posttranslational tyrosination/detyrosination of tubulin. Mol Neurobiol. 1988 Summer;2(2):133–153. doi: 10.1007/BF02935343. [DOI] [PubMed] [Google Scholar]
  4. Beckerle M. C., Porter K. R. Analysis of the role of microtubules and actin in erythrophore intracellular motility. J Cell Biol. 1983 Feb;96(2):354–362. doi: 10.1083/jcb.96.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beckerle M. C., Porter K. R. Inhibitors of dynein activity block intracellular transport in erythrophores. Nature. 1982 Feb 25;295(5851):701–703. doi: 10.1038/295701a0. [DOI] [PubMed] [Google Scholar]
  6. Belmont L. D., Hyman A. A., Sawin K. E., Mitchison T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell. 1990 Aug 10;62(3):579–589. doi: 10.1016/0092-8674(90)90022-7. [DOI] [PubMed] [Google Scholar]
  7. Breitfeld P. P., McKinnon W. C., Mostov K. E. Effect of nocodazole on vesicular traffic to the apical and basolateral surfaces of polarized MDCK cells. J Cell Biol. 1990 Dec;111(6 Pt 1):2365–2373. doi: 10.1083/jcb.111.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coue M., Lombillo V. A., McIntosh J. R. Microtubule depolymerization promotes particle and chromosome movement in vitro. J Cell Biol. 1991 Mar;112(6):1165–1175. doi: 10.1083/jcb.112.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gelfand V. I., Bershadsky A. D. Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol. 1991;7:93–116. doi: 10.1146/annurev.cb.07.110191.000521. [DOI] [PubMed] [Google Scholar]
  10. Gorbsky G. J., Sammak P. J., Borisy G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. doi: 10.1083/jcb.104.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Graessmann M., Graessman A. "Early" simian-virus-40-specific RNA contains information for tumor antigen formation and chromatin replication. Proc Natl Acad Sci U S A. 1976 Feb;73(2):366–370. doi: 10.1073/pnas.73.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gundersen G. G., Kalnoski M. H., Bulinski J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell. 1984 Oct;38(3):779–789. doi: 10.1016/0092-8674(84)90273-3. [DOI] [PubMed] [Google Scholar]
  13. Gyoeva F. K., Leonova E. V., Rodionov V. I., Gelfand V. I. Vimentin intermediate filaments in fish melanophores. J Cell Sci. 1987 Dec;88(Pt 5):649–655. doi: 10.1242/jcs.88.5.649. [DOI] [PubMed] [Google Scholar]
  14. Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koshland D. E., Mitchison T. J., Kirschner M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature. 1988 Feb 11;331(6156):499–504. doi: 10.1038/331499a0. [DOI] [PubMed] [Google Scholar]
  16. L'Hernault S. W., Rosenbaum J. L. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry. 1985 Jan 15;24(2):473–478. doi: 10.1021/bi00323a034. [DOI] [PubMed] [Google Scholar]
  17. Lim S. S., Sammak P. J., Borisy G. G. Progressive and spatially differentiated stability of microtubules in developing neuronal cells. J Cell Biol. 1989 Jul;109(1):253–263. doi: 10.1083/jcb.109.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McNiven M. A., Porter K. R. Microtubule polarity confers direction to pigment transport in chromatophores. J Cell Biol. 1986 Oct;103(4):1547–1555. doi: 10.1083/jcb.103.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McNiven M. A., Porter K. R. Organization of microtubules in centrosome-free cytoplasm. J Cell Biol. 1988 May;106(5):1593–1605. doi: 10.1083/jcb.106.5.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McNiven M. A., Wang M., Porter K. R. Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell. 1984 Jul;37(3):753–765. doi: 10.1016/0092-8674(84)90411-2. [DOI] [PubMed] [Google Scholar]
  21. Mitchison T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol. 1989 Aug;109(2):637–652. doi: 10.1083/jcb.109.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Obika M., Turner W. A., Jr, Negishi S., Menter D. G., Tchen T. T., Taylor J. D. The effects of lumicolchicine, colchicine and vinblastine on pigment migration in fish chromatophores. J Exp Zool. 1978 Jul;205(1):95–110. doi: 10.1002/jez.1402050112. [DOI] [PubMed] [Google Scholar]
  24. Ogawa K., Hosoya H., Yokota E., Kobayashi T., Wakamatsu Y., Ozato K., Negishi S., Obika M. Melanoma dynein: evidence that dynein is a general "motor" for microtubule-associated cell motilities. Eur J Cell Biol. 1987 Feb;43(1):3–9. [PubMed] [Google Scholar]
  25. Pepperkok R., Bré M. H., Davoust J., Kreis T. E. Microtubules are stabilized in confluent epithelial cells but not in fibroblasts. J Cell Biol. 1990 Dec;111(6 Pt 2):3003–3012. doi: 10.1083/jcb.111.6.3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Piperno G., Fuller M. T. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol. 1985 Dec;101(6):2085–2094. doi: 10.1083/jcb.101.6.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Piperno G., LeDizet M., Chang X. J. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol. 1987 Feb;104(2):289–302. doi: 10.1083/jcb.104.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reinsch S. S., Mitchison T. J., Kirschner M. Microtubule polymer assembly and transport during axonal elongation. J Cell Biol. 1991 Oct;115(2):365–379. doi: 10.1083/jcb.115.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rodionov V. I., Gyoeva F. K., Gelfand V. I. Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4956–4960. doi: 10.1073/pnas.88.11.4956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sale W. S., Besharse J. C., Piperno G. Distribution of acetylated alpha-tubulin in retina and in vitro-assembled microtubules. Cell Motil Cytoskeleton. 1988;9(3):243–253. doi: 10.1002/cm.970090306. [DOI] [PubMed] [Google Scholar]
  31. Sammak P. J., Borisy G. G. Detection of single fluorescent microtubules and methods for determining their dynamics in living cells. Cell Motil Cytoskeleton. 1988;10(1-2):237–245. doi: 10.1002/cm.970100128. [DOI] [PubMed] [Google Scholar]
  32. Saxton W. M., Stemple D. L., Leslie R. J., Salmon E. D., Zavortink M., McIntosh J. R. Tubulin dynamics in cultured mammalian cells. J Cell Biol. 1984 Dec;99(6):2175–2186. doi: 10.1083/jcb.99.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schliwa M., Bereiter-Hahn J. Pigment movements in fish melanophores: morphological and physiological studies. 3. The effects of colchicine and vinblastine. Z Zellforsch Mikrosk Anat. 1973 Dec 31;147(1):127–148. doi: 10.1007/BF00306604. [DOI] [PubMed] [Google Scholar]
  34. Schliwa M. Mechanisms of intracellular organelle transport. Cell Muscle Motil. 1984;5:1-82,403-6. doi: 10.1007/978-1-4684-4592-3_1. [DOI] [PubMed] [Google Scholar]
  35. Schliwa M. Microtubular apparates of melanophores. Three-dimensional organization. J Cell Biol. 1978 Mar;76(3):605–614. doi: 10.1083/jcb.76.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schliwa M., Osborn M., Weber K. Microtubule system of isolated fish melanophores as revealed by immunofluorescence microscopy. J Cell Biol. 1978 Jan;76(1):229–236. doi: 10.1083/jcb.76.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schulze E., Asai D. J., Bulinski J. C., Kirschner M. Posttranslational modification and microtubule stability. J Cell Biol. 1987 Nov;105(5):2167–2177. doi: 10.1083/jcb.105.5.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schulze E., Kirschner M. Dynamic and stable populations of microtubules in cells. J Cell Biol. 1987 Feb;104(2):277–288. doi: 10.1083/jcb.104.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schulze E., Kirschner M. Microtubule dynamics in interphase cells. J Cell Biol. 1986 Mar;102(3):1020–1031. doi: 10.1083/jcb.102.3.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Soltys B. J., Borisy G. G. Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes. J Cell Biol. 1985 May;100(5):1682–1689. doi: 10.1083/jcb.100.5.1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wadsworth P., McGrail M. Interphase microtubule dynamics are cell type-specific. J Cell Sci. 1990 Jan;95(Pt 1):23–32. doi: 10.1242/jcs.95.1.23. [DOI] [PubMed] [Google Scholar]
  42. Webster D. R., Borisy G. G. Microtubules are acetylated in domains that turn over slowly. J Cell Sci. 1989 Jan;92(Pt 1):57–65. doi: 10.1242/jcs.92.1.57. [DOI] [PubMed] [Google Scholar]
  43. Webster D. R., Gundersen G. G., Bulinski J. C., Borisy G. G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9040–9044. doi: 10.1073/pnas.84.24.9040. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES