Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Jul;34(7):1711–1716. doi: 10.1128/jcm.34.7.1711-1716.1996

Heterogeneity of diphtheria toxin gene, tox, and its regulatory element, dtxR, in Corynebacterium diphtheriae strains causing epidemic diphtheria in Russia and Ukraine.

H Nakao 1, J M Pruckler 1, I K Mazurova 1, O V Narvskaia 1, T Glushkevich 1, V F Marijevski 1, A N Kravetz 1, B S Fields 1, I K Wachsmuth 1, T Popovic 1
PMCID: PMC229100  PMID: 8784575

Abstract

Diphtheria toxin (tox) and its regulatory element (dtxR) from 72 Corynebacterium diphtheriae strains isolated in Russia and Ukraine before and during the current diphtheria epidemic were studied by PCR-single-strand conformation polymorphism analysis (PCR-SSCP). Twelve sets of primers were constructed (eight for tox and four for dtxR), and three regions within tox and all four regions of dtxR showed significant variations in the number and/or sizes of the amplicons. Two to four different SSCP patterns were identified in each of the variable regions; subsequently, tox and dtxR could be classified into 6 and 12 different types, respectively. The great majority of epidemic strains from both Russia and Ukraine had tox types 3 and 4, and only in a single preepidemic strain isolated in Russia were all eight tox regions identical to those of C. diphtheriae Park-Williams No. 8 (tox type 1). Epidemic strains from Ukraine can easily be identified by dtxR type 5, while the majority of the Russian epidemic strains have dtxR of types 2 and 8. No differences in the tox regions between mitis and gravis biotype strains were observed. However, dtxR types 2, 5, and 8 were identified only in the gravis biotype, and dtxR type 1 was characteristic for the mitis biotype strains. PCR-SSCP is a simple and rapid method for the identification of variable tox and dtxR regions that allows for the clear association of tox and dtxR types with strains of distinct temporal and/or geographic origins.

Full Text

The Full Text of this article is available as a PDF (386.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassam B. J., Caetano-Anollés G., Gresshoff P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 1991 Jul;196(1):80–83. doi: 10.1016/0003-2697(91)90120-i. [DOI] [PubMed] [Google Scholar]
  2. Boyd J. M., Hall K. C., Murphy J. R. DNA sequences and characterization of dtxR alleles from Corynebacterium diphtheriae PW8(-), 1030(-), and C7hm723(-). J Bacteriol. 1992 Feb;174(4):1268–1272. doi: 10.1128/jb.174.4.1268-1272.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyd J., Oza M. N., Murphy J. R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5968–5972. doi: 10.1073/pnas.87.15.5968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Zoysa A., Efstratiou A., George R. C., Jahkola M., Vuopio-Varkila J., Deshevoi S., Tseneva G., Rikushin Y. Molecular epidemiology of Corynebacterium diphtheriae from northwestern Russia and surrounding countries studied by using ribotyping and pulsed-field gel electrophoresis. J Clin Microbiol. 1995 May;33(5):1080–1083. doi: 10.1128/jcm.33.5.1080-1083.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galazka A. M., Robertson S. E., Oblapenko G. P. Resurgence of diphtheria. Eur J Epidemiol. 1995 Feb;11(1):95–105. doi: 10.1007/BF01719954. [DOI] [PubMed] [Google Scholar]
  6. Greenfield L., Bjorn M. J., Horn G., Fong D., Buck G. A., Collier R. J., Kaplan D. A. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6853–6857. doi: 10.1073/pnas.80.22.6853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1991 Aug;1(1):34–38. doi: 10.1101/gr.1.1.34. [DOI] [PubMed] [Google Scholar]
  8. Hongyo T., Buzard G. S., Calvert R. J., Weghorst C. M. 'Cold SSCP': a simple, rapid and non-radioactive method for optimized single-strand conformation polymorphism analyses. Nucleic Acids Res. 1993 Aug 11;21(16):3637–3642. doi: 10.1093/nar/21.16.3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaczorek M., Delpeyroux F., Chenciner N., Streeck R. E., Murphy J. R., Boquet P., Tiollais P. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science. 1983 Aug 26;221(4613):855–858. doi: 10.1126/science.6348945. [DOI] [PubMed] [Google Scholar]
  10. Lázaro C., Estivill X. Mutation analysis of genetic diseases by asymmetric-PCR SSCP and ethidium bromide staining: application to neurofibromatosis and cystic fibrosis. Mol Cell Probes. 1992 Oct;6(5):357–359. doi: 10.1016/0890-8508(92)90027-u. [DOI] [PubMed] [Google Scholar]
  11. Mikhailovich V. M., Melnikov V. G., Mazurova I. K., Wachsmuth I. K., Wenger J. D., Wharton M., Nakao H., Popovic T. Application of PCR for detection of toxigenic Corynebacterium diphtheriae strains isolated during the Russian diphtheria epidemic, 1990 through 1994. J Clin Microbiol. 1995 Nov;33(11):3061–3063. doi: 10.1128/jcm.33.11.3061-3063.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mohabeer A. J., Hiti A. L., Martin W. J. Non-radioactive single strand conformation polymorphism (SSCP) using the Pharmacia 'PhastSystem'. Nucleic Acids Res. 1991 Jun 11;19(11):3154–3154. doi: 10.1093/nar/19.11.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Olsvik O., Wahlberg J., Petterson B., Uhlén M., Popovic T., Wachsmuth I. K., Fields P. I. Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol. 1993 Jan;31(1):22–25. doi: 10.1128/jcm.31.1.22-25.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pallen M. J., Hay A. J., Puckey L. H., Efstratiou A. Polymerase chain reaction for screening clinical isolates of corynebacteria for the production of diphtheria toxin. J Clin Pathol. 1994 Apr;47(4):353–356. doi: 10.1136/jcp.47.4.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tao X., Murphy J. R. Cysteine-102 is positioned in the metal binding activation site of the Corynebacterium diphtheriae regulatory element DtxR. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8524–8528. doi: 10.1073/pnas.90.18.8524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tao X., Schiering N., Zeng H. Y., Ringe D., Murphy J. R. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol Microbiol. 1994 Oct;14(2):191–197. doi: 10.1111/j.1365-2958.1994.tb01280.x. [DOI] [PubMed] [Google Scholar]
  18. Wang Z., Schmitt M. P., Holmes R. K. Characterization of mutations that inactivate the diphtheria toxin repressor gene (dtxR). Infect Immun. 1994 May;62(5):1600–1608. doi: 10.1128/iai.62.5.1600-1608.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES