Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jun 2;129(6):1589–1599. doi: 10.1083/jcb.129.6.1589

Actin polymerization and intracellular solvent flow in cell surface blebbing

PMCID: PMC2291187  PMID: 7790356

Abstract

The cortical actin gel of eukaryotic cells is postulated to control cell surface activity. One type of protrusion that may offer clues to this regulation are the spherical aneurysms of the surface membrane known as blebs. Blebs occur normally in cells during spreading and alternate with other protrusions, such as ruffles, suggesting similar protrusive machinery is involved. We recently reported that human melanoma cell lines deficient in the actin filament cross-linking protein, ABP-280, show prolonged blebbing, thus allowing close study of blebs and their dynamics. Blebs expand at different rates of volume increase that directly predict the final size achieved by each bleb. These rates decrease as the F-actin concentration of the cells increase over time after plating on a surface, but do so at lower concentrations in ABP-280 expressing cells. Fluorescently labeled actin and phalloidin injections of blebbing cells indicate that a polymerized actin structure is not present initially, but appears later and is responsible for stopping further bleb expansion. Therefore, it is postulated that blebs occur when the fluid-driven expansion of the cell membrane is sufficiently rapid to initially outpace the local rate of actin polymerization. In this model, the rate of intracellular solvent flow driving this expansion decreases as cortical gelation is achieved, whether by factors such as ABP-280, or by concentrated actin polymers alone, thereby leading to decreased size and occurrence of blebs. Since the forces driving bleb extension would always be present in a cell, this process may influence other cell protrusions as well.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht-Buehler G. Does blebbing reveal the convulsive flow of liquid and solutes through the cytoplasmic meshwork? Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):45–49. doi: 10.1101/sqb.1982.046.01.008. [DOI] [PubMed] [Google Scholar]
  2. BOSS J. Mitosis in cultures of newt tissues. IV. The cell surface in late anaphase and the movements of ribonucleoprotein. Exp Cell Res. 1955 Feb;8(1):181–187. doi: 10.1016/0014-4827(55)90055-0. [DOI] [PubMed] [Google Scholar]
  3. Bereiter-Hahn J., Lück M., Miebach T., Stelzer H. K., Vöth M. Spreading of trypsinized cells: cytoskeletal dynamics and energy requirements. J Cell Sci. 1990 May;96(Pt 1):171–188. doi: 10.1242/jcs.96.1.171. [DOI] [PubMed] [Google Scholar]
  4. Cano M. L., Lauffenburger D. A., Zigmond S. H. Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution. J Cell Biol. 1991 Nov;115(3):677–687. doi: 10.1083/jcb.115.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen W. T. Surface changes during retraction-induced spreading of fibroblasts. J Cell Sci. 1981 Jun;49:1–13. doi: 10.1242/jcs.49.1.1a. [DOI] [PubMed] [Google Scholar]
  6. Condeelis J., Hall A. L. Measurement of actin polymerization and cross-linking in agonist-stimulated cells. Methods Enzymol. 1991;196:486–496. doi: 10.1016/0076-6879(91)96042-p. [DOI] [PubMed] [Google Scholar]
  7. Cooper J. A., Bryan J., Schwab B., 3rd, Frieden C., Loftus D. J., Elson E. L. Microinjection of gelsolin into living cells. J Cell Biol. 1987 Mar;104(3):491–501. doi: 10.1083/jcb.104.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooper J. A. The role of actin polymerization in cell motility. Annu Rev Physiol. 1991;53:585–605. doi: 10.1146/annurev.ph.53.030191.003101. [DOI] [PubMed] [Google Scholar]
  9. Cramer L. P., Mitchison T. J., Theriot J. A. Actin-dependent motile forces and cell motility. Curr Opin Cell Biol. 1994 Feb;6(1):82–86. doi: 10.1016/0955-0674(94)90120-1. [DOI] [PubMed] [Google Scholar]
  10. Cunningham C. C., Gorlin J. B., Kwiatkowski D. J., Hartwig J. H., Janmey P. A., Byers H. R., Stossel T. P. Actin-binding protein requirement for cortical stability and efficient locomotion. Science. 1992 Jan 17;255(5042):325–327. doi: 10.1126/science.1549777. [DOI] [PubMed] [Google Scholar]
  11. Dipasquale A. Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp Cell Res. 1975 Oct 15;95(2):425–439. doi: 10.1016/0014-4827(75)90568-6. [DOI] [PubMed] [Google Scholar]
  12. Dixon S. J., Pitaru S., Bhargava U., Aubin J. E. Membrane blebbing is associated with Ca2+-activated hyperpolarizations induced by serum and alpha 2-macroglobulin. J Cell Physiol. 1987 Sep;132(3):473–482. doi: 10.1002/jcp.1041320309. [DOI] [PubMed] [Google Scholar]
  13. Erickson C. A., Trinkaus J. P. Microvilli and blebs as sources of reserve surface membrane during cell spreading. Exp Cell Res. 1976 May;99(2):375–384. doi: 10.1016/0014-4827(76)90595-4. [DOI] [PubMed] [Google Scholar]
  14. Follett E. A., Goldman R. D. The occurrence of microvilli during spreading and growth of BHK21-C13 fibroblasts. Exp Cell Res. 1970 Jan;59(1):124–136. doi: 10.1016/0014-4827(70)90631-2. [DOI] [PubMed] [Google Scholar]
  15. Forsby N., Collins V. P., Westermark B. The spreading of human normal glial and malignant glioma cells in culture. Studies on standard culture conditions. Acta Pathol Microbiol Immunol Scand A. 1985 Sep;93(5):235–249. doi: 10.1111/j.1699-0463.1985.tb03947.x. [DOI] [PubMed] [Google Scholar]
  16. Gass G. V., Chernomordik L. V. Reversible large-scale deformations in the membranes of electrically-treated cells: electroinduced bleb formation. Biochim Biophys Acta. 1990 Mar 30;1023(1):1–11. doi: 10.1016/0005-2736(90)90002-6. [DOI] [PubMed] [Google Scholar]
  17. Grinnell F. Migration of human neutrophils in hydrated collagen lattices. J Cell Sci. 1982 Dec;58:95–108. doi: 10.1242/jcs.58.1.95. [DOI] [PubMed] [Google Scholar]
  18. Hartwig J. H., Shevlin P. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J Cell Biol. 1986 Sep;103(3):1007–1020. doi: 10.1083/jcb.103.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hartwig J. H., Stossel T. P. Cytochalasin B and the structure of actin gels. J Mol Biol. 1979 Nov 5;134(3):539–553. doi: 10.1016/0022-2836(79)90366-8. [DOI] [PubMed] [Google Scholar]
  20. Hartwig J. H., Yin H. L. The organization and regulation of the macrophage actin skeleton. Cell Motil Cytoskeleton. 1988;10(1-2):117–125. doi: 10.1002/cm.970100116. [DOI] [PubMed] [Google Scholar]
  21. Höglund A. S. The arrangement of microfilaments and microtubules in the periphery of spreading fibroblasts and glial cells. Tissue Cell. 1985;17(5):649–666. doi: 10.1016/0040-8166(85)90002-3. [DOI] [PubMed] [Google Scholar]
  22. Ito T., Suzuki A., Stossel T. P. Regulation of water flow by actin-binding protein-induced actin gelatin. Biophys J. 1992 May;61(5):1301–1305. doi: 10.1016/S0006-3495(92)81938-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ito T., Zaner K. S., Stossel T. P. Nonideality of volume flows and phase transitions of F-actin solutions in response to osmotic stress. Biophys J. 1987 May;51(5):745–753. doi: 10.1016/S0006-3495(87)83401-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Janmey P. A., Hvidt S., Peetermans J., Lamb J., Ferry J. D., Stossel T. P. Viscoelasticity of F-actin and F-actin/gelsolin complexes. Biochemistry. 1988 Oct 18;27(21):8218–8227. doi: 10.1021/bi00421a035. [DOI] [PubMed] [Google Scholar]
  25. Janson L. W., Kolega J., Taylor D. L. Modulation of contraction by gelation/solation in a reconstituted motile model. J Cell Biol. 1991 Sep;114(5):1005–1015. doi: 10.1083/jcb.114.5.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Keller H. U., Zimmermann A., Cottier H. Phorbol myristate acetate (PMA) suppresses polarization and locomotion and alters F-actin content of Walker carcinosarcoma cells. Int J Cancer. 1985 Oct 15;36(4):495–501. doi: 10.1002/ijc.2910360414. [DOI] [PubMed] [Google Scholar]
  27. Käs J., Strey H., Sackmann E. Direct imaging of reptation for semiflexible actin filaments. Nature. 1994 Mar 17;368(6468):226–229. doi: 10.1038/368226a0. [DOI] [PubMed] [Google Scholar]
  28. Laskov R., Baumal R., Polliack A. Surface morphology of cultured myeloma cells: bleb formation in cell variants with defects in immunoglobulin production and secretion. J Reticuloendothel Soc. 1978 May;23(5):361–372. [PubMed] [Google Scholar]
  29. Luby-Phelps K. Physical properties of cytoplasm. Curr Opin Cell Biol. 1994 Feb;6(1):3–9. doi: 10.1016/0955-0674(94)90109-0. [DOI] [PubMed] [Google Scholar]
  30. Luby-Phelps K., Taylor D. L., Lanni F. Probing the structure of cytoplasm. J Cell Biol. 1986 Jun;102(6):2015–2022. doi: 10.1083/jcb.102.6.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Niu M. Y., Nachmias V. T. Two-step mechanism for actin polymerization in human erythroleukemia cells induced by phorbol ester. Cell Motil Cytoskeleton. 1994;27(4):327–336. doi: 10.1002/cm.970270405. [DOI] [PubMed] [Google Scholar]
  32. Oster G. F. On the crawling of cells. J Embryol Exp Morphol. 1984 Nov;83 (Suppl):329–364. [PubMed] [Google Scholar]
  33. Oster G. F., Perelson A. S. The physics of cell motility. J Cell Sci Suppl. 1987;8:35–54. doi: 10.1242/jcs.1987.supplement_8.3. [DOI] [PubMed] [Google Scholar]
  34. Peskin C. S., Odell G. M., Oster G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J. 1993 Jul;65(1):316–324. doi: 10.1016/S0006-3495(93)81035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Phaire-Washington L., Wang E., Silverstein S. C. Phorbol myristate acetate stimulates pinocytosis and membrane spreading in mouse peritoneal macrophages. J Cell Biol. 1980 Aug;86(2):634–640. doi: 10.1083/jcb.86.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sheterline P., Rickard J. E., Boothroyd B., Richards R. C. Phorbol ester induces rapid actin assembly in neutrophil leucocytes independently of changes in [Ca2+]i and pHi. J Muscle Res Cell Motil. 1986 Oct;7(5):405–412. doi: 10.1007/BF01753583. [DOI] [PubMed] [Google Scholar]
  38. Small J. V. Getting the actin filaments straight: nucleation-release or treadmilling? Trends Cell Biol. 1995 Feb;5(2):52–55. doi: 10.1016/s0962-8924(00)88939-4. [DOI] [PubMed] [Google Scholar]
  39. Sugrue S. P., Hay E. D. Response of basal epithelial cell surface and Cytoskeleton to solubilized extracellular matrix molecules. J Cell Biol. 1981 Oct;91(1):45–54. doi: 10.1083/jcb.91.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Taylor D. L., Moore P. L., Condeelis J. S., Allen R. D. The mechanochemical basis of amoeboid movement. I. Ionic requirements for maintaining viscoelasticity and contractility of Amoeba cytoplasm. Exp Cell Res. 1976 Aug;101(1):127–133. doi: 10.1016/0014-4827(76)90421-3. [DOI] [PubMed] [Google Scholar]
  41. Theriot J. A., Mitchison T. J. Actin microfilament dynamics in locomoting cells. Nature. 1991 Jul 11;352(6331):126–131. doi: 10.1038/352126a0. [DOI] [PubMed] [Google Scholar]
  42. Tickle C., Trinkaus J. P. Some clues as to the formation of protrusions by Fundulus deep cells. J Cell Sci. 1977 Aug;26:139–150. doi: 10.1242/jcs.26.1.139. [DOI] [PubMed] [Google Scholar]
  43. Trinkaus J. P. Formation of protrusions of the cell surface during tissue cell movement. Prog Clin Biol Res. 1980;41:887–906. [PubMed] [Google Scholar]
  44. Trinkaus J. P. Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev Biol. 1973 Jan;30(1):69–103. doi: 10.1016/0012-1606(73)90049-3. [DOI] [PubMed] [Google Scholar]
  45. Wang Y. L. Mobility of filamentous actin in living cytoplasm. J Cell Biol. 1987 Dec;105(6 Pt 1):2811–2816. doi: 10.1083/jcb.105.6.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yin H. L., Zaner K. S., Stossel T. P. Ca2+ control of actin gelation. Interaction of gelsolin with actin filaments and regulation of actin gelation. J Biol Chem. 1980 Oct 10;255(19):9494–9500. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES