Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jun 2;129(6):1641–1650. doi: 10.1083/jcb.129.6.1641

7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity

PMCID: PMC2291188  PMID: 7790360

Abstract

The prohormone convertase PC2, which is thought to mediate the proteolytic conversion of many peptide hormones, has recently been shown to interact with the neuroendocrine-specific polypeptide 7B2 in Xenopus intermediate lobe (Braks, J. A. M., and G. J. M. Martens. Cell. 78:263. 1994). In the present work we have stably transfected neuroendocrine cell lines with rat 7B2 constructs and found that overexpression of 27 kD 7B2 greatly facilitates the kinetics of maturation of proPC2, both in AtT-20/PC2 cells and in Rin5f cells. The half-life of conversion of proPC2 was reduced from 2.7 to 1.7 h in AtT- 20/PC2 cells stably transfected with 27 kD 7B2 cDNA. The previously proposed "chaperone" domain was not sufficient for this facilitation event; however, a construct corresponding to the 21-kD 7B2 protein (which represents the naturally occurring maturation product) functioned well. A 7B2 construct in which maturation of 27 kD 7B2 to its 21-kD form was blocked was unable to facilitate maturation of proPC2. To correlate effects on PC2 maturation with the actual generation of PC2 enzymatic activity, a similar transfection of 21 kD 7B2 was performed using CHO cells previously amplified for the expression of proPC2. Enzymatic activity cleaving the fluorogenic substrate Cbz-Arg-Ser-Lys-Arg-AMC was highly correlated with the expression of immunoreactive 21 kD 7B2 in the conditioned medium; medium obtained from the parent cell line was completely inactive. Enzymatic activity was identified as PC2 on the basis of inhibition by the carboxy-terminal peptide of 7B2, which has previously been shown to represent a potent and specific PC2 inhibitor. Taken together, our in vivo results indicate that the interesting secretory protein 7B2 is a bifunctional molecule with an amino-terminal domain involved in proPC2 transport as well as activation.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayoubi T. A., van Duijnhoven H. L., van de Ven W. J., Jenks B. G., Roubos E. W., Martens G. J. The neuroendocrine polypeptide 7B2 is a precursor protein. J Biol Chem. 1990 Sep 15;265(26):15644–15647. [PubMed] [Google Scholar]
  2. Benjannet S., Rondeau N., Day R., Chrétien M., Seidah N. G. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3564–3568. doi: 10.1073/pnas.88.9.3564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benjannet S., Rondeau N., Paquet L., Boudreault A., Lazure C., Chrétien M., Seidah N. G. Comparative biosynthesis, covalent post-translational modifications and efficiency of prosegment cleavage of the prohormone convertases PC1 and PC2: glycosylation, sulphation and identification of the intracellular site of prosegment cleavage of PC1 and PC2. Biochem J. 1993 Sep 15;294(Pt 3):735–743. doi: 10.1042/bj2940735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benjannet S., Savaria D., Chrétien M., Seidah N. G. 7B2 is a specific intracellular binding protein of the prohormone convertase PC2. J Neurochem. 1995 May;64(5):2303–2311. doi: 10.1046/j.1471-4159.1995.64052303.x. [DOI] [PubMed] [Google Scholar]
  5. Braks J. A., Martens G. J. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell. 1994 Jul 29;78(2):263–273. doi: 10.1016/0092-8674(94)90296-8. [DOI] [PubMed] [Google Scholar]
  6. Breslin M. B., Lindberg I., Benjannet S., Mathis J. P., Lazure C., Seidah N. G. Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J Biol Chem. 1993 Dec 25;268(36):27084–27093. [PubMed] [Google Scholar]
  7. Goodman L. J., Gorman C. M. Autoproteolytic activation of the mouse prohormone convertase mPC1. Biochem Biophys Res Commun. 1994 Jun 15;201(2):795–804. doi: 10.1006/bbrc.1994.1771. [DOI] [PubMed] [Google Scholar]
  8. Guest P. C., Arden S. D., Bennett D. L., Clark A., Rutherford N. G., Hutton J. C. The post-translational processing and intracellular sorting of PC2 in the islets of Langerhans. J Biol Chem. 1992 Nov 5;267(31):22401–22406. [PubMed] [Google Scholar]
  9. Hsi K. L., Seidah N. G., De Serres G., Chrétien M. Isolation and NH2-terminal sequence of a novel porcine anterior pituitary polypeptide. Homology to proinsulin, secretin and Rous sarcoma virus transforming protein TVFV60. FEBS Lett. 1982 Oct 18;147(2):261–266. doi: 10.1016/0014-5793(82)81055-7. [DOI] [PubMed] [Google Scholar]
  10. Hutton J. C. Subtilisin-like proteinases involved in the activation of proproteins of the eukaryotic secretory pathway. Curr Opin Cell Biol. 1990 Dec;2(6):1131–1142. doi: 10.1016/0955-0674(90)90167-d. [DOI] [PubMed] [Google Scholar]
  11. Iguchi H., Chan J. S., Seidah N. G., Chrétien M. Tissue distribution and molecular forms of a novel pituitary protein in the rat. Neuroendocrinology. 1984 Nov;39(5):453–458. doi: 10.1159/000124020. [DOI] [PubMed] [Google Scholar]
  12. Lindberg I., Ahn S. C., Breslin M. B. Cellular distributions of the prohormone processing enzymes PC1 and PC2. Mol Cell Neurosci. 1994 Dec;5(6):614–622. doi: 10.1006/mcne.1994.1075. [DOI] [PubMed] [Google Scholar]
  13. Lindberg I. Evidence for cleavage of the PC1/PC3 pro-segment in the endoplasmic reticulum. Mol Cell Neurosci. 1994 Jun;5(3):263–268. doi: 10.1006/mcne.1994.1030. [DOI] [PubMed] [Google Scholar]
  14. Lindberg I., Lincoln B., Rhodes C. J. Fluorometric assay of a calcium-dependent, paired-basic processing endopeptidase present in insulinoma granules. Biochem Biophys Res Commun. 1992 Feb 28;183(1):1–7. doi: 10.1016/0006-291x(92)91599-l. [DOI] [PubMed] [Google Scholar]
  15. Lindberg I., van den Hurk W. H., Bui C., Batie C. J. Enzymatic characterization of immunopurified prohormone convertase 2: potent inhibition by a 7B2 peptide fragment. Biochemistry. 1995 Apr 25;34(16):5486–5493. doi: 10.1021/bi00016a020. [DOI] [PubMed] [Google Scholar]
  16. Martens G. J., Braks J. A., Eib D. W., Zhou Y., Lindberg I. The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5784–5787. doi: 10.1073/pnas.91.13.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mathis J. P., Lindberg I. Posttranslational processing of proenkephalin in AtT-20 cells: evidence for cleavage at a Lys-Lys site. Endocrinology. 1992 Nov;131(5):2287–2296. doi: 10.1210/endo.131.5.1425427. [DOI] [PubMed] [Google Scholar]
  18. Matthews G., Shennan K. I., Seal A. J., Taylor N. A., Colman A., Docherty K. Autocatalytic maturation of the prohormone convertase PC2. J Biol Chem. 1994 Jan 7;269(1):588–592. [PubMed] [Google Scholar]
  19. Milgram S. L., Mains R. E. Differential effects of temperature blockade on the proteolytic processing of three secretory granule-associated proteins. J Cell Sci. 1994 Mar;107(Pt 3):737–745. doi: 10.1242/jcs.107.3.737. [DOI] [PubMed] [Google Scholar]
  20. Paquet L., Bergeron F., Boudreault A., Seidah N. G., Chrétien M., Mbikay M., Lazure C. The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin-like convertase. J Biol Chem. 1994 Jul 29;269(30):19279–19285. [PubMed] [Google Scholar]
  21. Paquet L., Rondeau N., Seidah N. G., Lazure C., Chrétien M., Mbikay M. Immunological identification and sequence characterization of a peptide derived from the processing of neuroendocrine protein 7B2. FEBS Lett. 1991 Dec 2;294(1-2):23–26. doi: 10.1016/0014-5793(91)81334-5. [DOI] [PubMed] [Google Scholar]
  22. Seidah N. G., Hsi K. L., De Serres G., Rochemont J., Hamelin J., Antakly T., Cantin M., Chrétien M. Isolation and NH2-terminal sequence of a highly conserved human and porcine pituitary protein belonging to a new superfamily. Immunocytochemical localization in pars distalis and pars nervosa of the pituitary and in the supraoptic nucleus of the hypothalamus. Arch Biochem Biophys. 1983 Sep;225(2):525–534. doi: 10.1016/0003-9861(83)90063-2. [DOI] [PubMed] [Google Scholar]
  23. Shen F. S., Seidah N. G., Lindberg I. Biosynthesis of the prohormone convertase PC2 in Chinese hamster ovary cells and in rat insulinoma cells. J Biol Chem. 1993 Nov 25;268(33):24910–24915. [PubMed] [Google Scholar]
  24. Shennan K. I., Taylor N. A., Jermany J. L., Matthews G., Docherty K. Differences in pH optima and calcium requirements for maturation of the prohormone convertases PC2 and PC3 indicates different intracellular locations for these events. J Biol Chem. 1995 Jan 20;270(3):1402–1407. doi: 10.1074/jbc.270.3.1402. [DOI] [PubMed] [Google Scholar]
  25. Sigafoos J., Chestnut W. G., Merrill B. M., Taylor L. C., Diliberto E. J., Jr, Viveros O. H. Identification of a 7B2-derived tridecapeptide from bovine adrenal medulla chromaffin vesicles. Cell Mol Neurobiol. 1993 Jun;13(3):271–278. doi: 10.1007/BF00733755. [DOI] [PubMed] [Google Scholar]
  26. Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
  27. Thomas L., Leduc R., Thorne B. A., Smeekens S. P., Steiner D. F., Thomas G. Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: evidence for a common core of neuroendocrine processing enzymes. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5297–5301. doi: 10.1073/pnas.88.12.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vallette F., Mege E., Reiss A., Adesnik M. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 1989 Jan 25;17(2):723–733. doi: 10.1093/nar/17.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Waldbieser G. C., Aimi J., Dixon J. E. Cloning and characterization of the rat complementary deoxyribonucleic acid and gene encoding the neuroendocrine peptide 7B2. Endocrinology. 1991 Jun;128(6):3228–3236. doi: 10.1210/endo-128-6-3228. [DOI] [PubMed] [Google Scholar]
  30. Zhou A., Bloomquist B. T., Mains R. E. The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J Biol Chem. 1993 Jan 25;268(3):1763–1769. [PubMed] [Google Scholar]
  31. Zhou A., Mains R. E. Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2. J Biol Chem. 1994 Jul 1;269(26):17440–17447. [PubMed] [Google Scholar]
  32. Zhou Y., Lindberg I. Enzymatic properties of carboxyl-terminally truncated prohormone convertase 1 (PC1/SPC3) and evidence for autocatalytic conversion. J Biol Chem. 1994 Jul 15;269(28):18408–18413. [PubMed] [Google Scholar]
  33. Zhou Y., Lindberg I. Purification and characterization of the prohormone convertase PC1(PC3). J Biol Chem. 1993 Mar 15;268(8):5615–5623. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES