Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jun 2;129(6):1629–1640. doi: 10.1083/jcb.129.6.1629

Overexpression of the human NFM subunit in transgenic mice modifies the level of endogenous NFL and the phosphorylation state of NFH subunits

PMCID: PMC2291190  PMID: 7790359

Abstract

Neurofilaments (NFs), the major intermediate filaments of central nervous system (CNS) and peripheral nervous system (PNS) neurons, are heteropolymers formed from the high (NFH), middle (NFM), and low (NFL) molecular weight NF subunits. To gain insights into how the expression of NF subunit proteins is regulated in vivo, two transgenes harboring coding sequences for human NFM (hNFM) with or without the hNFM multiphosphorylation repeat domain were introduced into mice. Expression of both hNFM constructs was driven by the hNFM promoter and resulted in increased levels of hNFM subunits concomitant with an elevation in the levels of mouse NFL (mNFL) proteins in the CNS of both lines of transgenic mice. The increased levels of mNFL appear specific to NFM because previous studies of transgenic mice overexpressing either NFL or NFH did not result in increased expression of either of the other two NF subunits. Further, levels of the most heavily phosphorylated isoforms of mouse NFH (mNFH) were reduced in the brains of these transgenic mice, and electron microscopic studies showed a higher packing density of NFs in large-diameter CNS axons of transgenic versus wild-type mice. Thus, reduced phosphorylation of the mNFH carboxy terminal domain may be a compensatory response of CNS neurons to the increase in NFs, and reduced negative charges on mNFH sidearms may allow axons to accommodate more NFs by increasing their packing density. Taken together, these studies imply that NFM may play a dominant role in the in vivo regulation of the levels of NFL protein, the stoichiometry of NF subunits, and the phosphorylation state of NFH. NFM and NFH proteins may assume similar functions in regulation of NF packing density in vivo.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balin B. J., Lee V. M. Individual neurofilament subunits reassembled in vitro exhibit unique biochemical, morphological and immunological properties. Brain Res. 1991 Aug 16;556(2):196–208. doi: 10.1016/0006-8993(91)90307-h. [DOI] [PubMed] [Google Scholar]
  2. Beaudet L., Charron G., Houle D., Tretjakoff I., Peterson A., Julien J. P. Intragenic regulatory elements contribute to transcriptional control of the neurofilament light gene. Gene. 1992 Jul 15;116(2):205–214. doi: 10.1016/0378-1119(92)90517-s. [DOI] [PubMed] [Google Scholar]
  3. Beaudet L., Charron G., Julien J. P. Origin of the two mRNA species for the human neurofilament light gene. Biochem Cell Biol. 1992 May;70(5):279–284. doi: 10.1139/o92-044. [DOI] [PubMed] [Google Scholar]
  4. Beaudet L., Côté F., Houle D., Julien J. P. Different posttranscriptional controls for the human neurofilament light and heavy genes in transgenic mice. Brain Res Mol Brain Res. 1993 Apr;18(1-2):23–31. doi: 10.1016/0169-328x(93)90170-t. [DOI] [PubMed] [Google Scholar]
  5. Bennett G. S., DiLullo C. Transient expression of a neurofilament protein by replicating neuroepithelial cells of the embryonic chick brain. Dev Biol. 1985 Jan;107(1):107–127. doi: 10.1016/0012-1606(85)90380-x. [DOI] [PubMed] [Google Scholar]
  6. Bramblett G. T., Goedert M., Jakes R., Merrick S. E., Trojanowski J. Q., Lee V. M. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron. 1993 Jun;10(6):1089–1099. doi: 10.1016/0896-6273(93)90057-x. [DOI] [PubMed] [Google Scholar]
  7. Brown B. A., Nixon R. A., Strocchi P., Marotta C. A. Characterization and comparison of neurofilament proteins from rat and mouse CNS. J Neurochem. 1981 Jan;36(1):143–153. doi: 10.1111/j.1471-4159.1981.tb02389.x. [DOI] [PubMed] [Google Scholar]
  8. Carden M. J., Trojanowski J. Q., Schlaepfer W. W., Lee V. M. Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci. 1987 Nov;7(11):3489–3504. doi: 10.1523/JNEUROSCI.07-11-03489.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chin S. S., Liem R. K. Expression of rat neurofilament proteins NF-L and NF-M in transfected non-neuronal cells. Eur J Cell Biol. 1989 Dec;50(2):475–490. [PubMed] [Google Scholar]
  10. Ching G. Y., Liem R. K. Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol. 1993 Sep;122(6):1323–1335. doi: 10.1083/jcb.122.6.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chiu F. C., Norton W. T. Bulk preparation of CNS cytoskeleton and the separation of individual neurofilament proteins by gel filtration: dye-binding characteristics and amino acid compositions. J Neurochem. 1982 Nov;39(5):1252–1260. doi: 10.1111/j.1471-4159.1982.tb12562.x. [DOI] [PubMed] [Google Scholar]
  12. Clark E. A., Lee V. M. Dynamics of mammalian high-molecular-weight neurofilament subunit phosphorylation in cultured rat sympathetic neurons. J Neurosci Res. 1991 Sep;30(1):116–123. doi: 10.1002/jnr.490300113. [DOI] [PubMed] [Google Scholar]
  13. Coulombe P. A., Fuchs E. Elucidating the early stages of keratin filament assembly. J Cell Biol. 1990 Jul;111(1):153–169. doi: 10.1083/jcb.111.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Côté F., Collard J. F., Julien J. P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell. 1993 Apr 9;73(1):35–46. doi: 10.1016/0092-8674(93)90158-m. [DOI] [PubMed] [Google Scholar]
  15. Elder G. A., Friedrich V. L., Jr, Liang Z., Li X., Lazzarini R. A. Enhancer trapping by a human mid-sized neurofilament transgene reveals unexpected patterns of neuronal enhancer activity. Brain Res Mol Brain Res. 1994 Oct;26(1-2):177–188. doi: 10.1016/0169-328x(94)90089-2. [DOI] [PubMed] [Google Scholar]
  16. Eyer J., Peterson A. Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron. 1994 Feb;12(2):389–405. doi: 10.1016/0896-6273(94)90280-1. [DOI] [PubMed] [Google Scholar]
  17. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  18. Geisler N., Weber K. Self-assembly in Vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments. J Mol Biol. 1981 Sep 25;151(3):565–571. doi: 10.1016/0022-2836(81)90011-5. [DOI] [PubMed] [Google Scholar]
  19. Giudice G. J., Fuchs E. The transfection of epidermal keratin genes into fibroblasts and simple epithelial cells: evidence for inducing a type I keratin by a type II gene. Cell. 1987 Feb 13;48(3):453–463. doi: 10.1016/0092-8674(87)90196-6. [DOI] [PubMed] [Google Scholar]
  20. Gotow T., Tanaka T., Nakamura Y., Takeda M. Dephosphorylation of the largest neurofilament subunit protein influences the structure of crossbridges in reassembled neurofilaments. J Cell Sci. 1994 Jul;107(Pt 7):1949–1957. doi: 10.1242/jcs.107.7.1949. [DOI] [PubMed] [Google Scholar]
  21. Hoffman P. N., Cleveland D. W., Griffin J. W., Landes P. W., Cowan N. J., Price D. L. Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci U S A. 1987 May;84(10):3472–3476. doi: 10.1073/pnas.84.10.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ikenaka K., Nakahira K., Takayama C., Wada K., Hatanaka H., Mikoshiba K. Nerve growth factor rapidly induces expression of the 68-kDa neurofilament gene by posttranscriptional modification in PC12h-R cells. J Biol Chem. 1990 Nov 15;265(32):19782–19785. [PubMed] [Google Scholar]
  24. Julien J. P., Tretjakoff I., Beaudet L., Peterson A. Expression and assembly of a human neurofilament protein in transgenic mice provide a novel neuronal marking system. Genes Dev. 1987 Dec;1(10):1085–1095. doi: 10.1101/gad.1.10.1085. [DOI] [PubMed] [Google Scholar]
  25. Knapp A. C., Franke W. W. Spontaneous losses of control of cytokeratin gene expression in transformed, non-epithelial human cells occurring at different levels of regulation. Cell. 1989 Oct 6;59(1):67–79. doi: 10.1016/0092-8674(89)90870-2. [DOI] [PubMed] [Google Scholar]
  26. Kulesh D. A., Ceceña G., Darmon Y. M., Vasseur M., Oshima R. G. Posttranslational regulation of keratins: degradation of mouse and human keratins 18 and 8. Mol Cell Biol. 1989 Apr;9(4):1553–1565. doi: 10.1128/mcb.9.4.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Landmesser L., Swain S. Temporal and spatial modulation of a cytoskeletal antigen during peripheral axonal pathfinding. Neuron. 1992 Feb;8(2):291–305. doi: 10.1016/0896-6273(92)90296-p. [DOI] [PubMed] [Google Scholar]
  28. Lee M. K., Xu Z., Wong P. C., Cleveland D. W. Neurofilaments are obligate heteropolymers in vivo. J Cell Biol. 1993 Sep;122(6):1337–1350. doi: 10.1083/jcb.122.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee V. M., Carden M. J., Schlaepfer W. W., Trojanowski J. Q. Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci. 1987 Nov;7(11):3474–3488. doi: 10.1523/JNEUROSCI.07-11-03474.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lee V. M., Carden M. J., Trojanowski J. Q. Novel monoclonal antibodies provide evidence for the in situ existence of a nonphosphorylated form of the largest neurofilament subunit. J Neurosci. 1986 Mar;6(3):850–858. doi: 10.1523/JNEUROSCI.06-03-00850.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lee V. M., Elder G. A., Chen L. C., Liang Z., Snyder S. E., Friedrich V. L., Jr, Lazzarini R. A. Expression of human mid-sized neurofilament subunit in transgenic mice. Brain Res Mol Brain Res. 1992 Sep;15(1-2):76–84. doi: 10.1016/0169-328x(92)90154-4. [DOI] [PubMed] [Google Scholar]
  32. Lee V. M., Otvos L., Jr, Carden M. J., Hollosi M., Dietzschold B., Lazzarini R. A. Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1998–2002. doi: 10.1073/pnas.85.6.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lee V. M., Otvos L., Jr, Schmidt M. L., Trojanowski J. Q. Alzheimer disease tangles share immunological similarities with multiphosphorylation repeats in the two large neurofilament proteins. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7384–7388. doi: 10.1073/pnas.85.19.7384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lewis S. A., Cowan N. J. Anomalous placement of introns in a member of the intermediate filament multigene family: an evolutionary conundrum. Mol Cell Biol. 1986 May;6(5):1529–1534. doi: 10.1128/mcb.6.5.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Liem R. K., Hutchison S. B. Purification of individual components of the neurofilament triplet: filament assembly from the 70 000-dalton subunit. Biochemistry. 1982 Jun 22;21(13):3221–3226. doi: 10.1021/bi00256a029. [DOI] [PubMed] [Google Scholar]
  36. Liem R. K., Yen S. H., Salomon G. D., Shelanski M. L. Intermediate filaments in nervous tissues. J Cell Biol. 1978 Dec;79(3):637–645. doi: 10.1083/jcb.79.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lindenbaum M. H., Carbonetto S., Grosveld F., Flavell D., Mushynski W. E. Transcriptional and post-transcriptional effects of nerve growth factor on expression of the three neurofilament subunits in PC-12 cells. J Biol Chem. 1988 Apr 25;263(12):5662–5667. [PubMed] [Google Scholar]
  38. Lu X., Dengler J., Rothbarth K., Werner D. Differential screening of murine ascites cDNA libraries by means of in vitro transcripts of cell-cycle-phase-specific cDNA and digital image processing. Gene. 1990 Feb 14;86(2):185–192. doi: 10.1016/0378-1119(90)90278-y. [DOI] [PubMed] [Google Scholar]
  39. Monteiro M. J., Hoffman P. N., Gearhart J. D., Cleveland D. W. Expression of NF-L in both neuronal and nonneuronal cells of transgenic mice: increased neurofilament density in axons without affecting caliber. J Cell Biol. 1990 Oct;111(4):1543–1557. doi: 10.1083/jcb.111.4.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Moon H. M., Wisniewski T., Merz P., De Martini J., Wisniewski H. M. Partial purification of neurofilament subunits from bovine brains and studies on neurofilament assembly. J Cell Biol. 1981 Jun;89(3):560–567. doi: 10.1083/jcb.89.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mulligan L., Balin B. J., Lee V. M., Ip W. Antibody labeling of bovine neurofilaments: implications on the structure of neurofilament sidearms. J Struct Biol. 1991 Apr;106(2):145–160. doi: 10.1016/1047-8477(91)90084-a. [DOI] [PubMed] [Google Scholar]
  42. Myers M. W., Lazzarini R. A., Lee V. M., Schlaepfer W. W., Nelson D. L. The human mid-size neurofilament subunit: a repeated protein sequence and the relationship of its gene to the intermediate filament gene family. EMBO J. 1987 Jun;6(6):1617–1626. doi: 10.1002/j.1460-2075.1987.tb02409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nakahira K., Ikenaka K., Wada K., Tamura T., Furuichi T., Mikoshiba K. Structure of the 68-kDa neurofilament gene and regulation of its expression. J Biol Chem. 1990 Nov 15;265(32):19786–19791. [PubMed] [Google Scholar]
  44. Nixon R. A., Paskevich P. A., Sihag R. K., Thayer C. Y. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol. 1994 Aug;126(4):1031–1046. doi: 10.1083/jcb.126.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nixon R. A. The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathobiology. Brain Pathol. 1993 Jan;3(1):29–38. doi: 10.1111/j.1750-3639.1993.tb00723.x. [DOI] [PubMed] [Google Scholar]
  46. Ohara O., Gahara Y., Miyake T., Teraoka H., Kitamura T. Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J Cell Biol. 1993 Apr;121(2):387–395. doi: 10.1083/jcb.121.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pieper F. R., Van de Klundert F. A., Raats J. M., Henderik J. B., Schaart G., Ramaekers F. C., Bloemendal H. Regulation of vimentin expression in cultured epithelial cells. Eur J Biochem. 1992 Dec 1;210(2):509–519. doi: 10.1111/j.1432-1033.1992.tb17449.x. [DOI] [PubMed] [Google Scholar]
  48. Pleasure S. J., Selzer M. E., Lee V. M. Lamprey neurofilaments combine in one subunit the features of each mammalian NF triplet protein but are highly phosphorylated only in large axons. J Neurosci. 1989 Feb;9(2):698–709. doi: 10.1523/JNEUROSCI.09-02-00698.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Price R. L., Paggi P., Lasek R. J., Katz M. J. Neurofilaments are spaced randomly in the radial dimension of axons. J Neurocytol. 1988 Feb;17(1):55–62. doi: 10.1007/BF01735377. [DOI] [PubMed] [Google Scholar]
  50. Reeben M., Halmekytö M., Alhonen L., Sinervirta R., Saarma M., Jänne J. Tissue-specific expression of rat light neurofilament promoter-driven reporter gene in transgenic mice. Biochem Biophys Res Commun. 1993 Apr 30;192(2):465–470. doi: 10.1006/bbrc.1993.1438. [DOI] [PubMed] [Google Scholar]
  51. Sakaguchi T., Okada M., Kitamura T., Kawasaki K. Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett. 1993 Apr 16;153(1):65–68. doi: 10.1016/0304-3940(93)90078-y. [DOI] [PubMed] [Google Scholar]
  52. Schlaepfer W. W., Freeman L. A. Neurofilament proteins of rat peripheral nerve and spinal cord. J Cell Biol. 1978 Sep;78(3):653–662. doi: 10.1083/jcb.78.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schmidt M. L., Carden M. J., Lee V. M., Trojanowski J. Q. Phosphate dependent and independent neurofilament epitopes in the axonal swellings of patients with motor neuron disease and controls. Lab Invest. 1987 Mar;56(3):282–294. [PubMed] [Google Scholar]
  54. Schmidt M. L., Murray J., Lee V. M., Hill W. D., Wertkin A., Trojanowski J. Q. Epitope map of neurofilament protein domains in cortical and peripheral nervous system Lewy bodies. Am J Pathol. 1991 Jul;139(1):53–65. [PMC free article] [PubMed] [Google Scholar]
  55. Scott D., Smith K. E., O'Brien B. J., Angelides K. J. Characterization of mammalian neurofilament triplet proteins. Subunit stoichiometry and morphology of native and reconstituted filaments. J Biol Chem. 1985 Sep 5;260(19):10736–10747. [PubMed] [Google Scholar]
  56. Shecket G., Lasek R. J. Preparation of neurofilament protein from guinea pig peripheral nerve and spinal cord. J Neurochem. 1980 Dec;35(6):1335–1344. doi: 10.1111/j.1471-4159.1980.tb09007.x. [DOI] [PubMed] [Google Scholar]
  57. Shneidman P. S., Bruce J., Schwartz M. L., Schlaepfer W. W. Negative regulatory regions are present upstream in the three mouse neurofilament genes. Brain Res Mol Brain Res. 1992 Mar;13(1-2):127–138. doi: 10.1016/0169-328x(92)90052-d. [DOI] [PubMed] [Google Scholar]
  58. Szaro B. G., Lee V. M., Gainer H. Spatial and temporal expression of phosphorylated and non-phosphorylated forms of neurofilament proteins in the developing nervous system of Xenopus laevis. Brain Res Dev Brain Res. 1989 Jul 1;48(1):87–103. doi: 10.1016/0165-3806(89)90095-3. [DOI] [PubMed] [Google Scholar]
  59. Tapscott S. J., Bennett G. S., Holtzer H. Neuronal precursor cells in the chick neural tube express neurofilament proteins. Nature. 1981 Aug 27;292(5826):836–838. doi: 10.1038/292836a0. [DOI] [PubMed] [Google Scholar]
  60. Tohyama T., Lee V. M., Rorke L. B., Trojanowski J. Q. Molecular milestones that signal axonal maturation and the commitment of human spinal cord precursor cells to the neuronal or glial phenotype in development. J Comp Neurol. 1991 Aug 15;310(3):285–299. doi: 10.1002/cne.903100302. [DOI] [PubMed] [Google Scholar]
  61. Traub P., Vorgias C. E., Nelson W. J. Interaction in vitro of the neurofilament triplet proteins from porcine spinal cord with natural RNA and DNA. Mol Biol Rep. 1985 Apr;10(3):129–136. doi: 10.1007/BF00778517. [DOI] [PubMed] [Google Scholar]
  62. Trojanowski J. Q., Gonatas N. K. A morphometric study of the endocytosis of wheat germ agglutinin-horseradish peroxidase conjugates by retinal ganglion cells in the rat. Brain Res. 1983 Aug 8;272(2):201–210. doi: 10.1016/0006-8993(83)90566-8. [DOI] [PubMed] [Google Scholar]
  63. Trojanowski J. Q., Schuck T., Schmidt M. L., Lee V. M. Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem. 1989 Feb;37(2):209–215. doi: 10.1177/37.2.2492045. [DOI] [PubMed] [Google Scholar]
  64. Trojanowski J. Q., Walkenstein N., Lee V. M. Expression of neurofilament subunits in neurons of the central and peripheral nervous system: an immunohistochemical study with monoclonal antibodies. J Neurosci. 1986 Mar;6(3):650–660. doi: 10.1523/JNEUROSCI.06-03-00650.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Vickers J. C., Morrison J. H., Friedrich V. L., Jr, Elder G. A., Perl D. P., Katz R. N., Lazzarini R. A. Age-associated and cell-type-specific neurofibrillary pathology in transgenic mice expressing the human midsized neurofilament subunit. J Neurosci. 1994 Sep;14(9):5603–5612. doi: 10.1523/JNEUROSCI.14-09-05603.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Xu Z., Cork L. C., Griffin J. W., Cleveland D. W. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell. 1993 Apr 9;73(1):23–33. doi: 10.1016/0092-8674(93)90157-l. [DOI] [PubMed] [Google Scholar]
  67. Yachnis A. T., Rorke L. B., Lee V. M., Trojanowski J. Q. Expression of neuronal and glial polypeptides during histogenesis of the human cerebellar cortex including observations on the dentate nucleus. J Comp Neurol. 1993 Aug 15;334(3):356–369. doi: 10.1002/cne.903340303. [DOI] [PubMed] [Google Scholar]
  68. Yamasaki H., Bennett G. S., Itakura C., Mizutani M. Defective expression of neurofilament protein subunits in hereditary hypotrophic axonopathy of quail. Lab Invest. 1992 Jun;66(6):734–743. [PubMed] [Google Scholar]
  69. de Waegh S. M., Lee V. M., Brady S. T. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell. 1992 Feb 7;68(3):451–463. doi: 10.1016/0092-8674(92)90183-d. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES