Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Aug;34(8):1880–1884. doi: 10.1128/jcm.34.8.1880-1884.1996

Detection of extended-spectrum beta-lactamase (ESBL)-producing strains by the Etest ESBL screen.

M G Cormican 1, S A Marshall 1, R N Jones 1
PMCID: PMC229146  PMID: 8818874

Abstract

Resistance to contemporary broad-spectrum beta-lactams, mediated by extended-spectrum beta-lactamase (ESBL) enzymes, is an increasing problem worldwide. The Etest (AB Biodisk, Solna, Sweden) ESBL screen uses stable gradient technology to evaluate the MIC of ceftazidime alone compared with the MIC of ceftazidime with clavulanic acid (2 micrograms/ml) to facilitate the recognition of strains expressing inhibitable enzymes. In the present study, ESBL-producing strains (17 Escherichia coli transconjugants) were studied to define "sensitive" interpretive criteria for the Etest ESBL screen. These criteria (reduction of the ceftazidime MIC by > 2 log2 dilution steps in the presence of clavulanic acid) defined a group of 92 probable ESBL-positive organisms among the 225 tested strains of Klebsiella species and E. coli having suspicious antibiogram phenotypes. With a subset of 82 clinical strains, the Etest ESBL screen was more sensitive (100%) than the disk approximation test (87%) and was more convenient. The MICs of ciprofloxacin, gentamicin, and tobramycin at which 50% of isolates are inhibited were 16- to 128-fold higher (coresistance) for the ESBL screen-positive group of strains than for the ESBL screen-negative group of strains. Some strains for which cephalosporin MICs were elevated and which were Etest ESBL screen negative were also cefoxitin resistant, i.e., consistent with a chromosomally mediated AmpC resistance phenotype. The Etest ESBL screen test with the ceftazidime substrate appears to be a useful method for detecting or validating the presence of enteric bacilli potentially producing this type of beta-lactamase.

Full Text

The Full Text of this article is available as a PDF (468.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arlet G., Rouveau M., Casin I., Bouvet P. J., Lagrange P. H., Philippon A. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 beta-lactamase and which were isolated in 14 French hospitals. J Clin Microbiol. 1994 Oct;32(10):2553–2558. doi: 10.1128/jcm.32.10.2553-2558.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford P. A., Sanders C. C. Development of test panel of beta-lactamases expressed in a common Escherichia coli host background for evaluation of new beta-lactam antibiotics. Antimicrob Agents Chemother. 1995 Feb;39(2):308–313. doi: 10.1128/aac.39.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng Y., Chen M. Extended-spectrum beta-lactamases in clinical isolates of Enterobacter gergoviae and Escherichia coli in China. Antimicrob Agents Chemother. 1994 Dec;38(12):2838–2842. doi: 10.1128/aac.38.12.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Du Bois S. K., Marriott M. S., Amyes S. G. TEM- and SHV-derived extended-spectrum beta-lactamases: relationship between selection, structure and function. J Antimicrob Chemother. 1995 Jan;35(1):7–22. doi: 10.1093/jac/35.1.7. [DOI] [PubMed] [Google Scholar]
  6. Goldstein F. W., Péan Y., Rosato A., Gertner J., Gutmann L. Characterization of ceftriaxone-resistant Enterobacteriaceae: a multicentre study in 26 French hospitals. Vigil'Roc Study Group. J Antimicrob Chemother. 1993 Oct;32(4):595–603. doi: 10.1093/jac/32.4.595. [DOI] [PubMed] [Google Scholar]
  7. Huovinen S., Huovinén P., Jacoby G. A. Detection of plasmid-mediated beta-lactamases with DNA probes. Antimicrob Agents Chemother. 1988 Feb;32(2):175–179. doi: 10.1128/aac.32.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacoby G. A., Carreras I. Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1990 May;34(5):858–862. doi: 10.1128/aac.34.5.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jarlier V., Nicolas M. H., Fournier G., Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988 Jul-Aug;10(4):867–878. doi: 10.1093/clinids/10.4.867. [DOI] [PubMed] [Google Scholar]
  10. Jenks P. J., Hu Y. M., Danel F., Mehtar S., Livermore D. M. Plasmid-mediated production of class I (AmpC) beta-lactamase by two Klebsiella pneumoniae isolates from the UK. J Antimicrob Chemother. 1995 Jan;35(1):235–236. doi: 10.1093/jac/35.1.235. [DOI] [PubMed] [Google Scholar]
  11. Jones R. N., Kehrberg E. N., Erwin M. E., Anderson S. C. Prevalence of important pathogens and antimicrobial activity of parenteral drugs at numerous medical centers in the United States, I. Study on the threat of emerging resistances: real or perceived? Fluoroquinolone Resistance Surveillance Group. Diagn Microbiol Infect Dis. 1994 Aug;19(4):203–215. doi: 10.1016/0732-8893(94)90033-7. [DOI] [PubMed] [Google Scholar]
  12. Katsanis G. P., Spargo J., Ferraro M. J., Sutton L., Jacoby G. A. Detection of Klebsiella pneumoniae and Escherichia coli strains producing extended-spectrum beta-lactamases. J Clin Microbiol. 1994 Mar;32(3):691–696. doi: 10.1128/jcm.32.3.691-696.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kliebe C., Nies B. A., Meyer J. F., Tolxdorff-Neutzling R. M., Wiedemann B. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother. 1985 Aug;28(2):302–307. doi: 10.1128/aac.28.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mariotte S., Nordmann P., Nicolas M. H. Extended-spectrum beta-lactamase in Proteus mirabilis. J Antimicrob Chemother. 1994 May;33(5):925–935. doi: 10.1093/jac/33.5.925. [DOI] [PubMed] [Google Scholar]
  15. Meyer K. S., Urban C., Eagan J. A., Berger B. J., Rahal J. J. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med. 1993 Sep 1;119(5):353–358. doi: 10.7326/0003-4819-119-5-199309010-00001. [DOI] [PubMed] [Google Scholar]
  16. Moland E. S., Thomson K. S. Extended-spectrum beta-lactamases of Enterobacteriaceae. J Antimicrob Chemother. 1994 Mar;33(3):666–668. doi: 10.1093/jac/33.3.666. [DOI] [PubMed] [Google Scholar]
  17. Morosini M. I., Canton R., Martinez-Beltran J., Negri M. C., Perez-Diaz J. C., Baquero F., Blazquez J. New extended-spectrum TEM-type beta-lactamase from Salmonella enterica subsp. enterica isolated in a nosocomial outbreak. Antimicrob Agents Chemother. 1995 Feb;39(2):458–461. doi: 10.1128/aac.39.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neuwirth C., Siebor E., Lopez J., Pechinot A., Kazmierczak A. Outbreak of TEM-24-producing Enterobacter aerogenes in an intensive care unit and dissemination of the extended-spectrum beta-lactamase to other members of the family enterobacteriaceae. J Clin Microbiol. 1996 Jan;34(1):76–79. doi: 10.1128/jcm.34.1.76-79.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Payne D. J., Marriott M. S., Amyes S. G. Characterisation of a unique ceftazidime-hydrolysing beta-lactamase, TEM-E2. J Med Microbiol. 1990 Jun;32(2):131–134. doi: 10.1099/00222615-32-2-131. [DOI] [PubMed] [Google Scholar]
  20. Philippon A., Ben Redjeb S., Fournier G., Ben Hassen A. Epidemiology of extended spectrum beta-lactamases. Infection. 1989 Sep-Oct;17(5):347–354. doi: 10.1007/BF01650727. [DOI] [PubMed] [Google Scholar]
  21. Pörnull K. J., Rodrigo G., Dornbusch K. Production of a plasmid mediated AmpC-like beta-lactamase by a Klebsiella pneumoniae septicaemia isolate. J Antimicrob Chemother. 1994 Dec;34(6):943–954. doi: 10.1093/jac/34.6.943. [DOI] [PubMed] [Google Scholar]
  22. Rice L. B., Willey S. H., Papanicolaou G. A., Medeiros A. A., Eliopoulos G. M., Moellering R. C., Jr, Jacoby G. A. Outbreak of ceftazidime resistance caused by extended-spectrum beta-lactamases at a Massachusetts chronic-care facility. Antimicrob Agents Chemother. 1990 Nov;34(11):2193–2199. doi: 10.1128/aac.34.11.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roy C., Segura C., Tirado M., Reig R., Hermida M., Teruel D., Foz A. Frequency of plasmid-determined beta-lactamases in 680 consecutively isolated strains of Enterobacteriaceae. Eur J Clin Microbiol. 1985 Apr;4(2):146–147. doi: 10.1007/BF02013586. [DOI] [PubMed] [Google Scholar]
  24. Sader H. S., Pfaller M. A., Jones R. N. Prevalence of important pathogens and the antimicrobial activity of parenteral drugs at numerous medical centers in the United States. II. Study of the intra- and interlaboratory dissemination of extended-spectrum beta-lactamase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 1994 Dec;20(4):203–208. doi: 10.1016/0732-8893(94)90004-3. [DOI] [PubMed] [Google Scholar]
  25. Thomson C. J., Amyes S. G. Molecular epidemiology of the plasmid-encoded TEM-1 beta-lactamase in Scotland. Epidemiol Infect. 1993 Feb;110(1):117–125. doi: 10.1017/s0950268800050743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomson K. S., Sanders C. C. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother. 1992 Sep;36(9):1877–1882. doi: 10.1128/aac.36.9.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES