Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Aug;34(8):1922–1925. doi: 10.1128/jcm.34.8.1922-1925.1996

Phylogenetic analysis of pathogen-related oral spirochetes.

B K Choi 1, C Wyss 1, U B Göbel 1
PMCID: PMC229154  PMID: 8818882

Abstract

Recently, Riviere et al. reported as yet uncultivable invasive oral spirochetes that cross-reacted with monoclonal antibodies (MAbs) specific for Treponema pallidum (G. R. Riviere, K. S. Elliot, D. F. Adams, L. G. Simonson, L. B. Forgas, A. M. Nilius, and S. A. Lukehart, J. Periodontol. 63:131-136, 1992; G. R. Riviere, M. A. Wagoner, S. A. Baker-Zander, K. S. Weisz, D. F. Adams, L. Simonson, and S. A. Lukehart, N. Engl. J. Med. 325:539-543, 1991; G. R. Riviere, K. S. Weisz, D. F. Adams, and D. D. Thomas, Infect. Immun. 59:3377-3380, 1991; G. R. Riviere, K. S. Weisz, L. G. Simonson, and S. A. Lukehart, Infect. Immun. 59:2653-2657, 1991). In an attempt to phylogenetically analyze these pathogen-related oral spirochetes, we used immunomagnetic separation, combined with comparative sequence analysis of 16S rRNA genes amplified in vitro by the PCR. The bacteria were immunomagnetically enriched from subgingival plaque samples of patients with rapidly progressive periodontitis by using MAb H9-2 specific for the 37-kDa endoflagellum sheath protein of T. pallidum. After PCR amplification with universal eubacterial primers 16S rRNA gene fragments were cloned into Escherichia coli. A total of 20 randomly selected recombinants were analyzed by sequencing about 200 to 300 bases of the 500-bp inserts. All the spirochetal 16S rRNA sequences clustered to previously described, as yet uncultivable cluster 7 treponemes of group I (B. K. Choi, B. J. Paster, F. E. Dewhirst, and U. B. Göbel, Infect. Immun. 62:1889-1895, 1994). With a sequence similarity of 96.4% the most closely related cultivable treponeme was Treponema vincentii, which also belongs to the group I treponemes. Subsequent immunological analysis of cultured treponemes with MAb H9-2 revealed that only T. vincentii strains showed specific immunofluorescence or a characteristic 37-kDa band in immunoblots. We therefore conclude that pathogen-related oral spirochetes constitute a heterogeneous population of treponemes comprising T. vincentii and T. vincentii-related organisms that have common epitopes cross-reacting with MAb H9-2.

Full Text

The Full Text of this article is available as a PDF (328.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage G. C., Dickinson W. R., Jenderseck R. S., Levine S. M., Chambers D. W. Relationship between the percentage of subgingival spirochetes and the severity of periodontal disease. J Periodontol. 1982 Sep;53(9):550–556. doi: 10.1902/jop.1982.53.9.550. [DOI] [PubMed] [Google Scholar]
  2. Bickar D., Reid P. D. A high-affinity protein stain for western blots, tissue prints, and electrophoretic gels. Anal Biochem. 1992 May 15;203(1):109–115. doi: 10.1016/0003-2697(92)90049-d. [DOI] [PubMed] [Google Scholar]
  3. Biswas B., Vemulapalli R., Dutta S. K. Detection of Ehrlichia risticii from feces of infected horses by immunomagnetic separation and PCR. J Clin Microbiol. 1994 Sep;32(9):2147–2151. doi: 10.1128/jcm.32.9.2147-2151.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choi B. K., Paster B. J., Dewhirst F. E., Göbel U. B. Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun. 1994 May;62(5):1889–1895. doi: 10.1128/iai.62.5.1889-1895.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox D. L., Akins D. R., Porcella S. F., Norgard M. V., Radolf J. D. Treponema pallidum in gel microdroplets: a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol. 1995 Mar;15(6):1151–1164. doi: 10.1111/j.1365-2958.1995.tb02288.x. [DOI] [PubMed] [Google Scholar]
  6. Cox D. L., Chang P., McDowall A. W., Radolf J. D. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect Immun. 1992 Mar;60(3):1076–1083. doi: 10.1128/iai.60.3.1076-1083.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellen R. P., Song M., McCulloch C. A. Degradation of endogenous plasma membrane fibronectin concomitant with Treponema denticola 35405 adhesion to gingival fibroblasts. Infect Immun. 1994 Jul;62(7):3033–3037. doi: 10.1128/iai.62.7.3033-3037.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grenier D., Uitto V. J., McBride B. C. Cellular location of a Treponema denticola chymotrypsinlike protease and importance of the protease in migration through the basement membrane. Infect Immun. 1990 Feb;58(2):347–351. doi: 10.1128/iai.58.2.347-351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holt S. C. Anatomy and chemistry of spirochetes. Microbiol Rev. 1978 Mar;42(1):114–160. doi: 10.1128/mr.42.1.114-160.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Loesche W. J., Hockett R. N., Syed S. A. The predominant cultivable flora of tooth surface plaque removed from institutionalized subjects. Arch Oral Biol. 1972 Sep;17(9):1311–1325. doi: 10.1016/0003-9969(72)90164-1. [DOI] [PubMed] [Google Scholar]
  11. Loesche W. J. The role of spirochetes in periodontal disease. Adv Dent Res. 1988 Nov;2(2):275–283. doi: 10.1177/08959374880020021201. [DOI] [PubMed] [Google Scholar]
  12. Luk J. M., Lindberg A. A. Rapid and sensitive detection of Salmonella (O:6,7) by immunomagnetic monoclonal antibody-based assays. J Immunol Methods. 1991 Mar 1;137(1):1–8. doi: 10.1016/0022-1759(91)90387-u. [DOI] [PubMed] [Google Scholar]
  13. Lukehart S. A., Tam M. R., Hom J., Baker-Zander S. A., Holmes K. K., Nowinski R. C. Characterization of monoclonal antibodies to Treponema pallidum. J Immunol. 1985 Jan;134(1):585–592. [PubMed] [Google Scholar]
  14. Mikx F. H., Jacobs F., Satumalay C. Cell-bound peptidase activities of Treponema denticola ATCC 33520 in continuous culture. J Gen Microbiol. 1992 Sep;138(9):1837–1842. doi: 10.1099/00221287-138-9-1837. [DOI] [PubMed] [Google Scholar]
  15. Riviere G. R., Elliot K. S., Adams D. F., Simonson L. G., Forgas L. B., Nilius A. M., Lukehart S. A. Relative proportions of pathogen-related oral spirochetes (PROS) and Treponema denticola in supragingival and subgingival plaque from patients with periodontitis. J Periodontol. 1992 Feb;63(2):131–136. doi: 10.1902/jop.1992.63.2.131. [DOI] [PubMed] [Google Scholar]
  16. Riviere G. R., Wagoner M. A., Baker-Zander S. A., Weisz K. S., Adams D. F., Simonson L., Lukehart S. A. Identification of spirochetes related to Treponema pallidum in necrotizing ulcerative gingivitis and chronic periodontitis. N Engl J Med. 1991 Aug 22;325(8):539–543. doi: 10.1056/NEJM199108223250803. [DOI] [PubMed] [Google Scholar]
  17. Riviere G. R., Weisz K. S., Adams D. F., Thomas D. D. Pathogen-related oral spirochetes from dental plaque are invasive. Infect Immun. 1991 Oct;59(10):3377–3380. doi: 10.1128/iai.59.10.3377-3380.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Riviere G. R., Weisz K. S., Simonson L. G., Lukehart S. A. Pathogen-related spirochetes identified within gingival tissue from patients with acute necrotizing ulcerative gingivitis. Infect Immun. 1991 Aug;59(8):2653–2657. doi: 10.1128/iai.59.8.2653-2657.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  20. Simonson L. G., Goodman C. H., Bial J. J., Morton H. E. Quantitative relationship of Treponema denticola to severity of periodontal disease. Infect Immun. 1988 Apr;56(4):726–728. doi: 10.1128/iai.56.4.726-728.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simonson L. G., Robinson P. J., Pranger R. J., Cohen M. E., Morton H. E. Treponema denticola and Porphyromonas gingivalis as prognostic markers following periodontal treatment. J Periodontol. 1992 Apr;63(4):270–273. doi: 10.1902/jop.1992.63.4.270. [DOI] [PubMed] [Google Scholar]
  22. Skjerve E., Rørvik L. M., Olsvik O. Detection of Listeria monocytogenes in foods by immunomagnetic separation. Appl Environ Microbiol. 1990 Nov;56(11):3478–3481. doi: 10.1128/aem.56.11.3478-3481.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Uitto V. J., Pan Y. M., Leung W. K., Larjava H., Ellen R. P., Finlay B. B., McBride B. C. Cytopathic effects of Treponema denticola chymotrypsin-like proteinase on migrating and stratified epithelial cells. Infect Immun. 1995 Sep;63(9):3401–3410. doi: 10.1128/iai.63.9.3401-3410.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weinberg A., Holt S. C. Interaction of Treponema denticola TD-4, GM-1, and MS25 with human gingival fibroblasts. Infect Immun. 1990 Jun;58(6):1720–1729. doi: 10.1128/iai.58.6.1720-1729.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolfhagen M. J., Fluit A. C., Torensma R., Poppelier M. J., Verhoef J. Rapid detection of toxigenic Clostridium difficile in fecal samples by magnetic immuno PCR assay. J Clin Microbiol. 1994 Jul;32(7):1629–1633. doi: 10.1128/jcm.32.7.1629-1633.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wyss C. Campylobacter-Wolinella group organisms are the only oral bacteria that form arylsulfatase-active colonies on a synthetic indicator medium. Infect Immun. 1989 May;57(5):1380–1383. doi: 10.1128/iai.57.5.1380-1383.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wyss C., Choi B. K., Schüpbach P., Guggenheim B., Göbel U. B. Treponema maltophilum sp. nov., a small oral spirochete isolated from human periodontal lesions. Int J Syst Bacteriol. 1996 Jul;46(3):745–752. doi: 10.1099/00207713-46-3-745. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES