Skip to main content
Journal of Biomolecular Techniques : JBT logoLink to Journal of Biomolecular Techniques : JBT
. 2001 Sep;12(3):44–68.

Difficulties encountered during glycopeptide syntheses

J Borgia, N Malkar, H Abbasi, G Fields
PMCID: PMC2291655  PMID: 19499072

Full Text

The Full Text of this article is available as a PDF (323.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews D. M., Seale P. W. Solid-phase synthesis of O-mannosylated peptides: two strategies compared. Int J Pept Protein Res. 1993 Aug;42(2):165–170. doi: 10.1111/j.1399-3011.1993.tb00493.x. [DOI] [PubMed] [Google Scholar]
  2. Babel W., Glanville R. W. Structure of human-basement-membrane (type IV) collagen. Complete amino-acid sequence of a 914-residue-long pepsin fragment from the alpha 1(IV) chain. Eur J Biochem. 1984 Sep 17;143(3):545–556. doi: 10.1111/j.1432-1033.1984.tb08404.x. [DOI] [PubMed] [Google Scholar]
  3. Bertozzi C. R., Kiessling L. L. Chemical glycobiology. Science. 2001 Mar 23;291(5512):2357–2364. doi: 10.1126/science.1059820. [DOI] [PubMed] [Google Scholar]
  4. Bodanszky M., Kwei J. Z. Side reactions in peptide synthesis. VII. Sequence dependence in the formation of aminosuccinyl derivatives from beta-benzyl-aspartyl peptides. Int J Pept Protein Res. 1978 Aug;12(2):69–74. [PubMed] [Google Scholar]
  5. Bodanszky M., Tolle J. C., Deshmane S. S., Bodanszky A. Side reactions in peptide synthesis. VI. A reexamination of the benzyl group in the protection of the side chains of tyrosine and aspartic acid. Int J Pept Protein Res. 1978 Aug;12(2):57–68. [PubMed] [Google Scholar]
  6. Bourdon M. A., Krusius T., Campbell S., Schwartz N. B., Ruoslahti E. Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins. Proc Natl Acad Sci U S A. 1987 May;84(10):3194–3198. doi: 10.1073/pnas.84.10.3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Broddefalk Johan, Forsgren Mattias, Sethson Ingmar, Kihlberg Jan. Preparation of a Diglycosylated Hydroxylysine Building Block Used in Solid-Phase Synthesis of a Glycopeptide from Type II Collagen. J Org Chem. 1999 Nov 26;64(24):8948–8953. doi: 10.1021/jo990853d. [DOI] [PubMed] [Google Scholar]
  8. Butler W. T., Cunningham L. W. Evidence for the linkage of a disaccharide to hydroxylysine in tropocollagen. J Biol Chem. 1966 Sep 10;241(17):3882–3888. [PubMed] [Google Scholar]
  9. Chelberg M. K., McCarthy J. B., Skubitz A. P., Furcht L. T., Tsilibary E. C. Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J Cell Biol. 1990 Jul;111(1):261–270. doi: 10.1083/jcb.111.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dahms N. M., Lobel P., Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem. 1989 Jul 25;264(21):12115–12118. [PubMed] [Google Scholar]
  11. Fields C. G., Mickelson D. J., Drake S. L., McCarthy J. B., Fields G. B. Melanoma cell adhesion and spreading activities of a synthetic 124-residue triple-helical "mini-collagen". J Biol Chem. 1993 Jul 5;268(19):14153–14160. [PubMed] [Google Scholar]
  12. Fields G. B., Lauer J. L., Dori Y., Forns P., Yu Y. C., Tirrell M. Protein-like molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers. 1998;47(2):143–151. doi: 10.1002/(SICI)1097-0282(1998)47:2<143::AID-BIP3>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  13. Filira F., Biondi L., Cavaggion F., Scolaro B., Rocchi R. Synthesis of O-glycosylated tuftsins by utilizing threonine derivatives containing an unprotected monosaccharide moiety. Int J Pept Protein Res. 1990 Jul;36(1):86–96. doi: 10.1111/j.1399-3011.1990.tb00086.x. [DOI] [PubMed] [Google Scholar]
  14. Gao Y., Wells L., Comer F. I., Parker G. J., Hart G. W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem. 2001 Jan 8;276(13):9838–9845. doi: 10.1074/jbc.M010420200. [DOI] [PubMed] [Google Scholar]
  15. Helenius A., Aebi M. Intracellular functions of N-linked glycans. Science. 2001 Mar 23;291(5512):2364–2369. doi: 10.1126/science.291.5512.2364. [DOI] [PubMed] [Google Scholar]
  16. Hirschberg C. B., Snider M. D. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1987;56:63–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
  17. Kihlberg J., Elofsson M., Salvador L. A. Direct synthesis of glycosylated amino acids from carbohydrate peracetates and Fmoc amino acids: solid-phase synthesis of biomedicinally interesting glycopeptides. Methods Enzymol. 1997;289:221–245. doi: 10.1016/s0076-6879(97)89050-7. [DOI] [PubMed] [Google Scholar]
  18. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  19. Lauer J. L., Gendron C. M., Fields G. B. Effect of ligand conformation on melanoma cell alpha3beta1 integrin-mediated signal transduction events: implications for a collagen structural modulation mechanism of tumor cell invasion. Biochemistry. 1998 Apr 14;37(15):5279–5287. doi: 10.1021/bi972958l. [DOI] [PubMed] [Google Scholar]
  20. Li C., McCarthy J. B., Furcht L. T., Fields G. B. An all-D amino acid peptide model of alpha1(IV)531-543 from type IV collagen binds the alpha3beta1 integrin and mediates tumor cell adhesion, spreading, and motility. Biochemistry. 1997 Dec 9;36(49):15404–15410. doi: 10.1021/bi971817g. [DOI] [PubMed] [Google Scholar]
  21. Meldal M., Bielfeldt T., Peters S., Jensen K. J., Paulsen H., Bock K. Susceptibility of glycans to beta-elimination in Fmoc-based O-glycopeptide synthesis. Int J Pept Protein Res. 1994 Jun;43(6):529–536. doi: 10.1111/j.1399-3011.1994.tb00554.x. [DOI] [PubMed] [Google Scholar]
  22. Miles A. J., Knutson J. R., Skubitz A. P., Furcht L. T., McCarthy J. B., Fields G. B. A peptide model of basement membrane collagen alpha 1 (IV) 531-543 binds the alpha 3 beta 1 integrin. J Biol Chem. 1995 Dec 8;270(49):29047–29050. doi: 10.1074/jbc.270.49.29047. [DOI] [PubMed] [Google Scholar]
  23. Miles A. J., Skubitz A. P., Furcht L. T., Fields G. B. Promotion of cell adhesion by single-stranded and triple-helical peptide models of basement membrane collagen alpha 1(IV)531-543. Evidence for conformationally dependent and conformationally independent type IV collagen cell adhesion sites. J Biol Chem. 1994 Dec 9;269(49):30939–30945. [PubMed] [Google Scholar]
  24. Moses J., Oldberg A., Cheng F., Fransson L. A. Biosynthesis of the proteoglycan decorin--transient 2-phosphorylation of xylose during formation of the trisaccharide linkage region. Eur J Biochem. 1997 Sep 1;248(2):521–526. doi: 10.1111/j.1432-1033.1997.00521.x. [DOI] [PubMed] [Google Scholar]
  25. Nukada T., Kitajima T., Nakahara Y., Ogawa T. Synthesis of an octasaccharide fragment of high-mannose-type glycans of glycoproteins. Carbohydr Res. 1992 Apr 10;228(1):157–170. doi: 10.1016/s0008-6215(00)90557-3. [DOI] [PubMed] [Google Scholar]
  26. O'Conner S. E., Imperiali B. A molecular basis for glycosylation-induced conformational switching. Chem Biol. 1998 Aug;5(8):427–437. doi: 10.1016/s1074-5521(98)90159-4. [DOI] [PubMed] [Google Scholar]
  27. O'Connor S. E., Pohlmann J., Imperiali B., Saskiawan I., Yamamoto K. Probing the effect of the outer saccharide residues of N-linked glycans on peptide conformation. J Am Chem Soc. 2001 Jun 27;123(25):6187–6188. doi: 10.1021/ja010094s. [DOI] [PubMed] [Google Scholar]
  28. Oegema T. R., Jr, Kraft E. L., Jourdian G. W., Van Valen T. R. Phosphorylation of chondroitin sulfate in proteoglycans from the swarm rat chondrosarcoma. J Biol Chem. 1984 Feb 10;259(3):1720–1726. [PubMed] [Google Scholar]
  29. Otvos L., Jr, Wroblewski K., Kollat E., Perczel A., Hollosi M., Fasman G. D., Ertl H. C., Thurin J. Coupling strategies in solid-phase synthesis of glycopeptides. Pept Res. 1989 Nov-Dec;2(6):362–366. [PubMed] [Google Scholar]
  30. Pennington M. W., Byrnes M. E. Procedures to improve difficult couplings. Methods Mol Biol. 1994;35:1–16. doi: 10.1385/0-89603-273-6:1. [DOI] [PubMed] [Google Scholar]
  31. Rio S., Beau J. M., Jacquinet J. C. Synthesis of sulfated and phosphorylated glycopeptides from the carbohydrate-protein linkage region of proteoglycans. Carbohydr Res. 1994 Mar 4;255:103–124. doi: 10.1016/s0008-6215(00)90973-x. [DOI] [PubMed] [Google Scholar]
  32. Rio S., Beau J. M., Jacquinet J. C. Total synthesis of the carbohydrate-protein linkage region common to several mammalian proteoglycans. Carbohydr Res. 1993 Jun 21;244(2):295–313. doi: 10.1016/0008-6215(83)85009-5. [DOI] [PubMed] [Google Scholar]
  33. Sears P., Wong C. H. Toward automated synthesis of oligosaccharides and glycoproteins. Science. 2001 Mar 23;291(5512):2344–2350. doi: 10.1126/science.1058899. [DOI] [PubMed] [Google Scholar]
  34. Sjölin Petter, Elofsson Mikael, Kihlberg Jan. Removal of Acyl Protective Groups from Glycopeptides: Base Does Not Epimerize Peptide Stereocenters, and beta-Elimination Is Slow. J Org Chem. 1996 Jan 26;61(2):560–565. doi: 10.1021/jo951817r. [DOI] [PubMed] [Google Scholar]
  35. Spiro R. G. Characterization and quantitative determination of the hydroxylysine-linked carbohydrate units of several collagens. J Biol Chem. 1969 Feb 25;244(4):602–612. [PubMed] [Google Scholar]
  36. Tam J. P., Riemen M. W., Merrifield R. B. Mechanisms of aspartimide formation: the effects of protecting groups, acid, base, temperature and time. Pept Res. 1988 Sep-Oct;1(1):6–18. [PubMed] [Google Scholar]
  37. Vogel W., Gish G. D., Alves F., Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell. 1997 Dec;1(1):13–23. doi: 10.1016/s1097-2765(00)80003-9. [DOI] [PubMed] [Google Scholar]
  38. Wang ZG, Zhang X, Live D, Danishefsky SJ. From Glycals to Glycopeptides: A Convergent and Stereoselective Total Synthesis of a High Mannose N-Linked Glycopeptide This work was supported by the National Institutes of Health (Grant Numbers AI16943/CA28824). We thank Dr. George Sukenick of the MSKCC NMR Core Facility for NMR and mass spectral analyses (NIH Grant Number: CA08748). Angew Chem Int Ed Engl. 2000 Oct 16;39(20):3652–3656. doi: 10.1002/1521-3773(20001016)39:20<3652::aid-anie3652>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  39. Wells L., Vosseller K., Hart G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science. 2001 Mar 23;291(5512):2376–2378. doi: 10.1126/science.1058714. [DOI] [PubMed] [Google Scholar]
  40. Wittelsberger A, Keller M, Scarpellino L, Patiny L, Acha-Orbea H, Mutter M. Pseudoprolines: Targeting a cis Conformation in a Mimetic of the gp120 V3 Loop of HIV-1 We are grateful to Dipl.-Biol. Raymond Jacquet for helpful advice. This work was supported by the Swiss National Science Foundation. Angew Chem Int Ed Engl. 2000 Mar;39(6):1111–1115. doi: 10.1002/(sici)1521-3773(20000317)39:6<1111::aid-anie1111>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  41. Wold F. In vivo chemical modification of proteins (post-translational modification). Annu Rev Biochem. 1981;50:783–814. doi: 10.1146/annurev.bi.50.070181.004031. [DOI] [PubMed] [Google Scholar]
  42. Wyss D. F., Wagner G. The structural role of sugars in glycoproteins. Curr Opin Biotechnol. 1996 Aug;7(4):409–416. doi: 10.1016/s0958-1669(96)80116-9. [DOI] [PubMed] [Google Scholar]
  43. ZAHN H., UMLAUF E. Uber Oxylysin. Hoppe Seylers Z Physiol Chem. 1954;297(3-6):127–145. [PubMed] [Google Scholar]

Articles from Journal of Biomolecular Techniques : JBT are provided here courtesy of The Association of Biomolecular Resource Facilities

RESOURCES