Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Sep;34(9):2210–2218. doi: 10.1128/jcm.34.9.2210-2218.1996

Rubella reimmunization: comparative analysis of the immunoglobulin G response to rubella virus vaccine in previously seronegative and seropositive individuals.

L A Mitchell 1, M K Ho 1, J E Rogers 1, A J Tingle 1, R G Marusyk 1, J M Weber 1, P Duclos 1, M L Tepper 1, M Lacroix 1, M Zrein 1
PMCID: PMC229219  PMID: 8862587

Abstract

Rubella virus (RV)-specific immunoglobulin G (IgG) antibodies were studied in military recruits undergoing unselected immunization with live attenuated measles, mumps, and rubella virus (MMR) vaccine. Three different whole-RV enzyme immunoassays (EIAs) and an epitope-specific EIA with a synthetic peptide (BCH-178c) representing a heutralization domain on the RV E1 envelope protein were used. Before vaccination, 84.2, 87.7, and 84.5% of the subjects tested (n = 399) were found to be seropositive (> 10 IU/ml or assay equivalent) by the three whole-RV EIAs, respectively, while only 82.5% were seropositive by the BCH-178c EIA. Although prevaccination seropositivity rates were similar for the whole-RV EIAs (sensitivity, 94 to 100%), many sera considered seropositive by the whole-RV EIAs had E1 peptide EIA antibody levels of < 10 IU/ml (sensitivity, 77.4 to 80.7%). One month after vaccination, 97.8, 97.2, and 93.5% of the subjects who were followed (n = 356) were seropositive by the three whole-RV EIAs, respectively, while 89% had BCH-178c peptide-specific IgG titers of > 10 IU/ml. After vaccination, depending on the assay used, up to 20.6% of initially seropositive individuals exhibited a greater than fourfold increase in RV-specific IgG, while up to 47.3% showed a greater than twofold increase. Increased antibody titers after vaccination (seroboosting) were most frequently associated with low levels of BCH-178c peptide-specific IgG before vaccination. RV protein-specific IgG was also studied by immunoblot assays in a subset (n = 56) of individuals receiving the MMR vaccine. Of these, 89.4 and 91.1% exhibited RV protein (E1, E2, and C protein)-specific IgG before and after vaccination, respectively. Seroboosting (two- to fourfold increase in EIA titers of individuals seropositive by the whole-RV EIA before vaccination) was usually accompanied by a shift in the IgG immunoblot pattern from a single (E1) to multiple (E1-E1, E1-C, or E1-E2-C) specificities, suggesting exposure of new epitopes as a result of viral replication.

Full Text

The Full Text of this article is available as a PDF (267.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assaad F., Ljungars-Esteves K. Rubella--world impact. Rev Infect Dis. 1985 Mar-Apr;7 (Suppl 1):S29–S36. doi: 10.1093/clinids/7.supplement_1.s29. [DOI] [PubMed] [Google Scholar]
  2. Balfour H. H., Jr, Groth K. E., Edelman C. K., Amren D. P., Best J. M., Banatvala J. E. Rubella viraemia and antibody responses after rubella vaccination and reimmunization. Lancet. 1981 May 16;1(8229):1078–1080. doi: 10.1016/s0140-6736(81)92243-1. [DOI] [PubMed] [Google Scholar]
  3. Banatvala J. E., Best J. M., O'Shea S., Dudgeon J. A. Persistence of rubella antibodies after vaccination: detection after experimental challenge. Rev Infect Dis. 1985 Mar-Apr;7 (Suppl 1):S86–S90. doi: 10.1093/clinids/7.supplement_1.s86. [DOI] [PubMed] [Google Scholar]
  4. Best J. M. Rubella vaccines: past, present and future. Epidemiol Infect. 1991 Aug;107(1):17–30. doi: 10.1017/s0950268800048640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgess M. A. Rubella reinfection--what risk to the fetus? Med J Aust. 1992 Jun 15;156(12):824–825. doi: 10.5694/j.1326-5377.1992.tb136990.x. [DOI] [PubMed] [Google Scholar]
  6. Chaye H., Chong P., Tripet B., Brush B., Gillam S. Localization of the virus neutralizing and hemagglutinin epitopes of E1 glycoprotein of rubella virus. Virology. 1992 Aug;189(2):483–492. doi: 10.1016/0042-6822(92)90572-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chernesky M. A., Smaill F., Mahony J. B., Castriciano S. Combined testing for antibodies to rubella non-structural and envelope proteins sentinels infections in two outbreaks. Diagn Microbiol Infect Dis. 1987 Nov;8(3):173–177. doi: 10.1016/0732-8893(87)90168-4. [DOI] [PubMed] [Google Scholar]
  8. Cusi M. G., Rossolini G. M., Valensin P. E., Cellesi C., Zanchi A. Serological evidence of reinfection among vaccinees during rubella outbreak. Lancet. 1990 Oct 27;336(8722):1071–1071. doi: 10.1016/0140-6736(90)92545-s. [DOI] [PubMed] [Google Scholar]
  9. Duclos P., Tepper M. L., Weber J., Marusyk R. G. Seroprevalence of measles- and rubella-specific antibodies among military recruits, Canada, 1991. Can J Public Health. 1994 Jul-Aug;85(4):278–281. [PubMed] [Google Scholar]
  10. Eisele C. J. Rubella susceptibility in women of childbearing age. J Obstet Gynecol Neonatal Nurs. 1993 May-Jun;22(3):260–263. doi: 10.1111/j.1552-6909.1993.tb01807.x. [DOI] [PubMed] [Google Scholar]
  11. Enders G., Nickerl-Pacher U., Miller E., Cradock-Watson J. E. Outcome of confirmed periconceptional maternal rubella. Lancet. 1988 Jun 25;1(8600):1445–1447. doi: 10.1016/s0140-6736(88)92249-0. [DOI] [PubMed] [Google Scholar]
  12. Fogel A., Gerichter C. B., Barnea B., Handsher R., Heeger E. Response to experimental challenge in persons immunized with different rubella vaccines. J Pediatr. 1978 Jan;92(1):26–29. doi: 10.1016/s0022-3476(78)80064-x. [DOI] [PubMed] [Google Scholar]
  13. Forsgren M., Sörén L. Subclinical rubella reinfection in vaccinated women with rubella-specific IgM response during pregnancy and transmission of virus to the fetus. Scand J Infect Dis. 1985;17(4):337–341. doi: 10.3109/13813458509058772. [DOI] [PubMed] [Google Scholar]
  14. Frey T. K. Molecular biology of rubella virus. Adv Virus Res. 1994;44:69–160. doi: 10.1016/S0065-3527(08)60328-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grillner L. Neutralizing antibodies after rubella vaccination of newly delivered women: a comparison between three vaccines. Scand J Infect Dis. 1975;7(3):169–172. doi: 10.3109/inf.1975.7.issue-3.03. [DOI] [PubMed] [Google Scholar]
  16. Harcus A. W., Ward A. E., Bryett K. A. Rubella vaccination: a study in adult male volunteers. Curr Med Res Opin. 1986;10(5):291–295. doi: 10.1185/03007998609111093. [DOI] [PubMed] [Google Scholar]
  17. Herrmann K. L. Rubella in the United States: toward a strategy for disease control and elimination. Epidemiol Infect. 1991 Aug;107(1):55–61. doi: 10.1017/s0950268800048676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hillary I. B., Griffith A. H. Persistence of rubella antibodies 15 years after subcutaneous administration of Wistar 27/3 strain live attenuated rubella virus vaccine. Vaccine. 1984 Dec;2(4):274–276. doi: 10.1016/0264-410x(84)90043-4. [DOI] [PubMed] [Google Scholar]
  19. Hornstein L., Levy U., Fogel A. Clinical rubella with virus transmission to the fetus in a pregnant woman considered to be immune. N Engl J Med. 1988 Nov 24;319(21):1415–1416. [PubMed] [Google Scholar]
  20. Keith C. G. Congenital rubella infection from reinfection of previously immunised mothers. Aust N Z J Ophthalmol. 1991 Nov;19(4):291–293. doi: 10.1111/j.1442-9071.1991.tb00674.x. [DOI] [PubMed] [Google Scholar]
  21. Miller E., Cradock-Watson J. E., Pollock T. M. Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet. 1982 Oct 9;2(8302):781–784. doi: 10.1016/s0140-6736(82)92677-0. [DOI] [PubMed] [Google Scholar]
  22. Miller K. A., Zager T. D. Rubella susceptibility in an adolescent female population. Mayo Clin Proc. 1984 Jan;59(1):31–34. doi: 10.1016/s0025-6196(12)60339-5. [DOI] [PubMed] [Google Scholar]
  23. Mitchell L. A., Décarie D., Shukin R., Tingle A. J., Ford D. K., Lacroix M., Zrein M. Cellular hyperimmunoreactivity to rubella virus synthetic peptides in chronic rubella associated arthritis. Ann Rheum Dis. 1993 Aug;52(8):590–594. doi: 10.1136/ard.52.8.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mitchell L. A., Tingle A. J., Shukin R., Sangeorzan J. A., McCune J., Braun D. K. Chronic rubella vaccine-associated arthropathy. Arch Intern Med. 1993 Oct 11;153(19):2268–2274. [PubMed] [Google Scholar]
  25. Mitchell L. A., Zhang T., Ho M., Décarie D., Tingle A. J., Zrein M., Lacroix M. Characterization of rubella virus-specific antibody responses by using a new synthetic peptide-based enzyme-linked immunosorbent assay. J Clin Microbiol. 1992 Jul;30(7):1841–1847. doi: 10.1128/jcm.30.7.1841-1847.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Naficy K., Nategh R., Ahangary S., Mohsenin H. Artificial challenge studies in rubella. Utilization of RA 27-3 rubella vaccines, rubella naturally acquired seropositives, and rubella susceptible children. Am J Dis Child. 1970 Dec;120(6):520–523. [PubMed] [Google Scholar]
  27. O'Shea S., Best J. M., Banatvala J. E. Viremia, virus excretion, and antibody responses after challenge in volunteers with low levels of antibody to rubella virus. J Infect Dis. 1983 Oct;148(4):639–647. doi: 10.1093/infdis/148.4.639. [DOI] [PubMed] [Google Scholar]
  28. O'Shea S., Parsons G., Best J. M., Banatvala J. E., Balfour H. H., Jr How well do low levels of rubella antibody protect? Lancet. 1981 Dec 5;2(8258):1284–1284. doi: 10.1016/s0140-6736(81)91517-8. [DOI] [PubMed] [Google Scholar]
  29. Plotkin S. A., Farquhar J. D., Ogra P. L. Immunologic properties of RA27-3 rubella virus vaccine. A comparison with strains presently licensed in the United States. JAMA. 1973 Aug 6;225(6):585–590. doi: 10.1001/jama.225.6.585. [DOI] [PubMed] [Google Scholar]
  30. Robinson R. G., Dudenhoeffer F. E., Holroyd H. J., Baker L. R., Bernstein D. I., Cherry J. D. Rubella immunity in older children, teenagers, and young adults: a comparison of immunity in those previously immunized with those unimmunized. J Pediatr. 1982 Aug;101(2):188–191. doi: 10.1016/s0022-3476(82)80114-5. [DOI] [PubMed] [Google Scholar]
  31. Schiff G. M., Young B. C., Stefanovic' G. M., Stamler E. F., Knowlton D. R., Grundy B. J., Dorsett P. H. Challenge with rubella virus after loss of detectable vaccine-induced antibody. Rev Infect Dis. 1985 Mar-Apr;7 (Suppl 1):S157–S163. doi: 10.1093/clinids/7.supplement_1.s157. [DOI] [PubMed] [Google Scholar]
  32. Schluederberg A., Horstmann D. M., Andiman W. A., Randolph M. F. Neutralizing and hemagglutination-inhibiting antibodies to rubella virus as indicators of protective immunity in vaccinees and naturally immune individuals. J Infect Dis. 1978 Dec;138(6):877–883. doi: 10.1093/infdis/138.6.877. [DOI] [PubMed] [Google Scholar]
  33. Terry G. M., Ho-Terry L., Londesborough P., Rees K. R. Localization of the rubella E1 epitopes. Arch Virol. 1988;98(3-4):189–197. doi: 10.1007/BF01322168. [DOI] [PubMed] [Google Scholar]
  34. Tingle A. J., Chantler J. K., Pot K. H., Paty D. W., Ford D. K. Postpartum rubella immunization: association with development of prolonged arthritis, neurological sequelae, and chronic rubella viremia. J Infect Dis. 1985 Sep;152(3):606–612. doi: 10.1093/infdis/152.3.606. [DOI] [PubMed] [Google Scholar]
  35. Wolinsky J. S., Sukholutsky E., Moore W. T., Lovett A., McCarthy M., Adame B. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain. J Virol. 1993 Feb;67(2):961–968. doi: 10.1128/jvi.67.2.961-968.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang T., Mauracher C. A., Mitchell L. A., Tingle A. J. Detection of rubella virus-specific immunoglobulin G (IgG), IgM, and IgA antibodies by immunoblot assays. J Clin Microbiol. 1992 Apr;30(4):824–830. doi: 10.1128/jcm.30.4.824-830.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zrein M., Joncas J. H., Pedneault L., Robillard L., Dwyer R. J., Lacroix M. Comparison of a whole-virus enzyme immunoassay (EIA) with a peptide-based EIA for detecting rubella virus immunoglobulin G antibodies following rubella vaccination. J Clin Microbiol. 1993 Jun;31(6):1521–1524. doi: 10.1128/jcm.31.6.1521-1524.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES