Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Oct;34(10):2351–2355. doi: 10.1128/jcm.34.10.2351-2355.1996

Detection and identification of mycobacteria in formalin-fixed, paraffin-embedded tissues by nested PCR and restriction enzyme analysis.

C R Bascuñana 1, K Belák 1
PMCID: PMC229267  PMID: 8880478

Abstract

A novel assay based on a nested PCR and restriction enzyme analysis of the PCR products was developed for the rapid detection and identification of Mycobacterium bovis and M. avium-M. intracellulare species in formalin-fixed, paraffin-embedded tissue (PET) specimens. On the basis of the nucleotide sequence data obtained in the present study, general nested primers were constructed to amplify a 424-bp segment of the gene encoding the 65-kDa surface antigen of mycobacteria. The nested PCR assay proved to be highly sensitive, since as little as 5 to 10 fg of extracted mycobacterial DNA was detected. The safety of the assay as a routine method for the diagnosis of M. bovis and M. avium-M. intracellulare in PET specimens was provided by taking various precautions. In order to prevent false positivity, specific tools and procedures were applied. To detect false-negative results and assess the efficiency of the PCR, an internal standard molecule of amplification was constructed. The digestion of the amplicons with the restriction endonuclease Sau96-I allowed the identification of M. bovis and M. avium-M. intracellulare in a large number of clinical specimens. The present results indicate that PCR combined with an internal control of amplification and restriction enzyme analysis of the amplicons provides a rapid, sensitive, and reliable method for routine diagnostic laboratories to detect and identify M. bovis and M. avium-M. intracellulare in PET specimens.

Full Text

The Full Text of this article is available as a PDF (266.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An S. F., Fleming K. A. Removal of inhibitor(s) of the polymerase chain reaction from formalin fixed, paraffin wax embedded tissues. J Clin Pathol. 1991 Nov;44(11):924–927. doi: 10.1136/jcp.44.11.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baess I. Determination and re-examination of genome sizes and base ratios on deoxyribonucleic acid from mycobacteria. Acta Pathol Microbiol Immunol Scand B. 1984 Aug;92(4):209–211. doi: 10.1111/j.1699-0463.1984.tb02822.x. [DOI] [PubMed] [Google Scholar]
  3. Ballagi-Pordány A., Belák S. The use of mimics as internal standards to avoid false negatives in diagnostic PCR. Mol Cell Probes. 1996 Jun;10(3):159–164. doi: 10.1006/mcpr.1996.0022. [DOI] [PubMed] [Google Scholar]
  4. Bates J. H. Diagnosis of tuberculosis. Chest. 1979 Dec;76(6 Suppl):757–763. doi: 10.1378/chest.76.6_supplement.757. [DOI] [PubMed] [Google Scholar]
  5. Belák S., Ballagi-Pordány A. Experiences on the application of the polymerase chain reaction in a diagnostic laboratory. Mol Cell Probes. 1993 Jun;7(3):241–248. doi: 10.1006/mcpr.1993.1035. [DOI] [PubMed] [Google Scholar]
  6. Buchanan T. M., Nomaguchi H., Anderson D. C., Young R. A., Gillis T. P., Britton W. J., Ivanyi J., Kolk A. H., Closs O., Bloom B. R. Characterization of antibody-reactive epitopes on the 65-kilodalton protein of Mycobacterium leprae. Infect Immun. 1987 Apr;55(4):1000–1003. doi: 10.1128/iai.55.4.1000-1003.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butler W. R., Kilburn J. O. Identification of major slowly growing pathogenic mycobacteria and Mycobacterium gordonae by high-performance liquid chromatography of their mycolic acids. J Clin Microbiol. 1988 Jan;26(1):50–53. doi: 10.1128/jcm.26.1.50-53.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colston A., McConnell I., Bujdoso R. Cloning and expression in Escherichia coli of DNA encoding a 60 kDa stress protein of Mycobacterium paratuberculosis, the causative agent of Johne's disease. Microbiology. 1994 Dec;140(Pt 12):3329–3336. doi: 10.1099/13500872-140-12-3329. [DOI] [PubMed] [Google Scholar]
  9. Diagnosis and treatment of disease caused by nontuberculous mycobacteria. Am Rev Respir Dis. 1990 Oct;142(4):940–953. doi: 10.1164/ajrccm/142.4.940. [DOI] [PubMed] [Google Scholar]
  10. Ghossein R. A., Ross D. G., Salomon R. N., Rabson A. R. Rapid detection and species identification of mycobacteria in paraffin-embedded tissues by polymerase chain reaction. Diagn Mol Pathol. 1992 Sep;1(3):185–191. [PubMed] [Google Scholar]
  11. Heller M. J., Robinson R. A., Burgart L. J., TenEyck C. J., Wilke W. W. DNA extraction by sonication: a comparison of fresh, frozen, and paraffin-embedded tissues extracted for use in polymerase chain reaction assays. Mod Pathol. 1992 Mar;5(2):203–206. [PubMed] [Google Scholar]
  12. Kallio P., Syrjänen S., Tervahauta A., Syrjänen K. A simple method for isolation of DNA from formalin-fixed paraffin-embedded samples for PCR. J Virol Methods. 1991 Nov;35(1):39–47. doi: 10.1016/0166-0934(91)90083-c. [DOI] [PubMed] [Google Scholar]
  13. Kapur V., Li L. L., Hamrick M. R., Plikaytis B. B., Shinnick T. M., Telenti A., Jacobs W. R., Jr, Banerjee A., Cole S., Yuen K. Y. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med. 1995 Feb;119(2):131–138. [PubMed] [Google Scholar]
  14. Morris J. A., Ivanyi J. Immunoassays of field isolates of Mycobacterium bovis and other mycobacteria by use of monoclonal antibodies. J Med Microbiol. 1985 Jun;19(3):367–373. doi: 10.1099/00222615-19-3-367. [DOI] [PubMed] [Google Scholar]
  15. Perosio P. M., Frank T. S. Detection and species identification of mycobacteria in paraffin sections of lung biopsy specimens by the polymerase chain reaction. Am J Clin Pathol. 1993 Dec;100(6):643–647. doi: 10.1093/ajcp/100.6.643. [DOI] [PubMed] [Google Scholar]
  16. Plikaytis B. B., Plikaytis B. D., Yakrus M. A., Butler W. R., Woodley C. L., Silcox V. A., Shinnick T. M. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J Clin Microbiol. 1992 Jul;30(7):1815–1822. doi: 10.1128/jcm.30.7.1815-1822.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shinnick T. M. The 65-kilodalton antigen of Mycobacterium tuberculosis. J Bacteriol. 1987 Mar;169(3):1080–1088. doi: 10.1128/jb.169.3.1080-1088.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993 Feb;31(2):175–178. doi: 10.1128/jcm.31.2.175-178.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thole J. E., Keulen W. J., De Bruyn J., Kolk A. H., Groothuis D. G., Berwald L. G., Tiesjema R. H., van Embden J. D. Characterization, sequence determination, and immunogenicity of a 64-kilodalton protein of Mycobacterium bovis BCG expressed in escherichia coli K-12. Infect Immun. 1987 Jun;55(6):1466–1475. doi: 10.1128/iai.55.6.1466-1475.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tötsch M., Brömmelkamp E., Stücker A., Fille M., Gross R., Wiesner P., Schmid K. W., Böcker W., Dockhorn-Dworniczak B. Identification of mycobacteria to the species level by automated restriction enzyme fragment length polymorphism analysis. Virchows Arch. 1995;427(1):85–89. doi: 10.1007/BF00203742. [DOI] [PubMed] [Google Scholar]
  21. Yeager H., Jr, Lacy J., Smith L. R., LeMaistre C. A. Quantitative studies of mycobacterial populations in sputum and saliva. Am Rev Respir Dis. 1967 Jun;95(6):998–1004. doi: 10.1164/arrd.1967.95.6.998. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES