Abstract
Identification of Acinetobacter spp. to the DNA group level by phenotypic techniques is problematic, and there is a need for an alternative identification method for routine use. The present study validated the suitability of a rapid identification technique based on tRNA spacer (tDNA) fingerprinting in comparison with that of a commercially available assay involving carbon source utilization tests (Biolog MicroStation System) for identifying the 21 DNA-DNA hybridization groups belonging to the genus. For this purpose, 128 strains identified previously by DNA-DNA hybridization were analyzed by both techniques. tDNA fingerprinting was highly reproducible and classified all strains into 17 groups. Six DNA groups belonging to the A. calcoaceticus-A. baumannii complex were grouped into two distinct clusters, indicating the high degree of genetic similarity within this complex. Strains of the more recently described DNA groups BJ13 to BJ16 were ambiguously grouped and displayed three pattern types. The software used with the commercial carbon source utilization method grouped the 128 strains into 12 clusters, explaining the less discriminatory power of this system. We conclude that tDNA fingerprinting offers a quick and reliable method for the routine differentiation of most Acinetobacter spp. at the subgenus level.
Full Text
The Full Text of this article is available as a PDF (208.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumann P. Isolation of Acinetobacter from soil and water. J Bacteriol. 1968 Jul;96(1):39–42. doi: 10.1128/jb.96.1.39-42.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernards A. T., Dijkshoorn L., Van der Toorn J., Bochner B. R., Van Boven C. P. Phenotypic characterisation of Acinetobacter strains of 13 DNA-DNA hybridisation groups by means of the biolog system. J Med Microbiol. 1995 Feb;42(2):113–119. doi: 10.1099/00222615-42-2-113. [DOI] [PubMed] [Google Scholar]
- Bouvet P. J., Jeanjean S. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res Microbiol. 1989 May-Jun;140(4-5):291–299. doi: 10.1016/0923-2508(89)90021-1. [DOI] [PubMed] [Google Scholar]
- Bouvet P. J., Jeanjean S. Differentiation of Acinetobacter calcoaceticus sensu stricto from related Acinetobacter species by electrophoretic polymorphism of malate dehydrogenase, glutamate dehydrogenase and catalase. Res Microbiol. 1995 Nov-Dec;146(9):773–785. doi: 10.1016/0923-2508(96)81073-4. [DOI] [PubMed] [Google Scholar]
- Carson C. A., Keller J. M., McAdoo K. K., Wang D., Higgins B., Bailey C. W., Thorne J. G., Payne B. J., Skala M., Hahn A. W. Escherichia coli O157:H7 restriction pattern recognition by artificial neural network. J Clin Microbiol. 1995 Nov;33(11):2894–2898. doi: 10.1128/jcm.33.11.2894-2898.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crosa J. H., Brenner D. J., Falkow S. Use of a single-strand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J Bacteriol. 1973 Sep;115(3):904–911. doi: 10.1128/jb.115.3.904-911.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowe M., Towner K. J., Humphreys H. Clinical and epidemiological features of an outbreak of acinetobacter infection in an intensive therapy unit. J Med Microbiol. 1995 Jul;43(1):55–62. doi: 10.1099/00222615-43-1-55. [DOI] [PubMed] [Google Scholar]
- Fishel S., Lisi F., Rinaldi L., Lisi R., Timson J., Green S., Hall J., Fleming S., Hunter A., Dowell K. Intracytoplasmic sperm injection (ICSI) versus high insemination concentration (HIC) for human conception in vitro. Reprod Fertil Dev. 1995;7(2):169–175. doi: 10.1071/rd9950169. [DOI] [PubMed] [Google Scholar]
- Gerner-Smidt P. Acinetobacter: epidemiological and taxonomic aspects. APMIS Suppl. 1994;47:1–41. [PubMed] [Google Scholar]
- Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol. 1992 Oct;30(10):2680–2685. doi: 10.1128/jcm.30.10.2680-2685.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerner-Smidt P., Tjernberg I. Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS. 1993 Nov;101(11):826–832. [PubMed] [Google Scholar]
- Gerner-Smidt P., Tjernberg I., Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol. 1991 Feb;29(2):277–282. doi: 10.1128/jcm.29.2.277-282.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Getchell-White S. I., Donowitz L. G., Gröschel D. H. The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infect Control Hosp Epidemiol. 1989 Sep;10(9):402–407. doi: 10.1086/646061. [DOI] [PubMed] [Google Scholar]
- Go E. S., Urban C., Burns J., Kreiswirth B., Eisner W., Mariano N., Mosinka-Snipas K., Rahal J. J. Clinical and molecular epidemiology of acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet. 1994 Nov 12;344(8933):1329–1332. doi: 10.1016/s0140-6736(94)90694-7. [DOI] [PubMed] [Google Scholar]
- Grundmann H., Schneider C., Tichy H. V., Simon R., Klare I., Hartung D., Daschner F. D. Automated laser fluorescence analysis of randomly amplified polymorphic DNA: a rapid method for investigating nosocomial transmission of Acinetobacter baumannii. J Med Microbiol. 1995 Dec;43(6):446–451. doi: 10.1099/00222615-43-6-446. [DOI] [PubMed] [Google Scholar]
- Johnson J. L., Anderson R. S., Ordal E. J. Nucleic acid homologies among oxidase-negative Moraxella species. J Bacteriol. 1970 Feb;101(2):568–573. doi: 10.1128/jb.101.2.568-573.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kämpfer P., Tjernberg I., Ursing J. Numerical classification and identification of Acinetobacter genomic species. J Appl Bacteriol. 1993 Sep;75(3):259–268. doi: 10.1111/j.1365-2672.1993.tb02775.x. [DOI] [PubMed] [Google Scholar]
- Stager C. E., Davis J. R. Automated systems for identification of microorganisms. Clin Microbiol Rev. 1992 Jul;5(3):302–327. doi: 10.1128/cmr.5.3.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tjernberg I., Ursing J. Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS. 1989 Jul;97(7):595–605. doi: 10.1111/j.1699-0463.1989.tb00449.x. [DOI] [PubMed] [Google Scholar]
- Vaneechoutte M., Dijkshoorn L., Tjernberg I., Elaichouni A., de Vos P., Claeys G., Verschraegen G. Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J Clin Microbiol. 1995 Jan;33(1):11–15. doi: 10.1128/jcm.33.1.11-15.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Washington J. A. An international multicenter study of blood culture practices. The International Collaborative Blood Culture Study Group. Eur J Clin Microbiol Infect Dis. 1992 Dec;11(12):1115–1128. doi: 10.1007/BF01961130. [DOI] [PubMed] [Google Scholar]
- Welsh J., McClelland M. Genomic fingerprints produced by PCR with consensus tRNA gene primers. Nucleic Acids Res. 1991 Feb 25;19(4):861–866. doi: 10.1093/nar/19.4.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiedmann-al-Ahmad M., Tichy H. V., Schön G. Characterization of Acinetobacter type strains and isolates obtained from wastewater treatment plants by PCR fingerprinting. Appl Environ Microbiol. 1994 Nov;60(11):4066–4071. doi: 10.1128/aem.60.11.4066-4071.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]