Abstract
An outbreak of multidrug-resistant Enterobacter cloacae infection lasted for 4 months in a neonatal intensive care unit (NICU). Forty-six isolates from the NICU and 20 epidemiologically unrelated strains were characterized by pulsed-field gel electrophoresis (PFGE) and repetitive extragenic palindromic unit b1-primed PCR (REPUb1-PCR) typing. The PFGE patterns after XbaI restriction of the bacterial DNA were analyzed by computer software (Gelcompar) using the UPGMA (unweighted pair group method with arithmetic averages) clustering method and the Dice coefficient. The 46 isolates from the NICU were classified by PFGE typing into five clusters: A (further classified into 7 subtypes, A1 to A7), B, C, D, and E. This outbreak was attributed to multiple genetically related strains of cluster A which had a similarity of 85.8% +/- 4.6%. The minor band differences among strains of cluster A were probably due to minor genetic mutations. The type A1 and A3 strains were isolated from the clinical specimens of patients and hands of nurses. It was probable that these outbreak strains were transmitted among patients via the hands of personnel. REPUb1-PCR typing of the 46 isolates also demonstrated five types, in agreement with results obtained by the PFGE technique, but could not detect the minor mutations among the cluster A strains. Twenty epidemiologically unrelated strains were well distinguished by both PFGE and REPUb1-PCR typing. We conclude that PFGE is a highly discriminatory but time-consuming method for epidemiological typing of E. cloacae and that REPUb1-PCR is a more rapid method with good reproducibility and discriminatory power comparable to that of PFGE.
Full Text
The Full Text of this article is available as a PDF (834.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acolet D., Ahmet Z., Houang E., Hurley R., Kaufmann M. E. Enterobacter cloacae in a neonatal intensive care unit: account of an outbreak and its relationship to use of third generation cephalosporins. J Hosp Infect. 1994 Dec;28(4):273–286. doi: 10.1016/0195-6701(94)90091-4. [DOI] [PubMed] [Google Scholar]
- Bingen E., Denamur E., Lambert-Zechovsky N., Brahimi N., el Lakany M., Elion J. Rapid genotyping shows the absence of cross-contamination in Enterobacter cloacae nosocomial infections. J Hosp Infect. 1992 Jun;21(2):95–101. doi: 10.1016/0195-6701(92)90028-k. [DOI] [PubMed] [Google Scholar]
- Burchard K. W., Barrall D. T., Reed M., Slotman G. J. Enterobacter bacteremia in surgical patients. Surgery. 1986 Nov;100(5):857–862. [PubMed] [Google Scholar]
- Dahl M. K., Francoz E., Saurin W., Boos W., Manson M. D., Hofnung M. Comparison of sequences from the malB regions of Salmonella typhimurium and Enterobacter aerogenes with Escherichia coli K12: a potential new regulatory site in the interoperonic region. Mol Gen Genet. 1989 Aug;218(2):199–207. doi: 10.1007/BF00331269. [DOI] [PubMed] [Google Scholar]
- Ellsworth D. L., Rittenhouse K. D., Honeycutt R. L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques. 1993 Feb;14(2):214–217. [PubMed] [Google Scholar]
- Froshauer S., Beckwith J. The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem. 1984 Sep 10;259(17):10896–10903. [PubMed] [Google Scholar]
- Garaizar J., Kaufmann M. E., Pitt T. L. Comparison of ribotyping with conventional methods for the type identification of Enterobacter cloacae. J Clin Microbiol. 1991 Jul;29(7):1303–1307. doi: 10.1128/jcm.29.7.1303-1307.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaston M. A., Bucher C., Pitt T. L. O serotyping scheme for Enterobacter cloacae. J Clin Microbiol. 1983 Nov;18(5):1079–1083. doi: 10.1128/jcm.18.5.1079-1083.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaston M. A. Enterobacter: an emerging nosocomial pathogen. J Hosp Infect. 1988 Apr;11(3):197–208. doi: 10.1016/0195-6701(88)90098-9. [DOI] [PubMed] [Google Scholar]
- Gaston M. A. Isolation and selection of a bacteriophage-typing set for Enterobacter cloacae. J Med Microbiol. 1987 Dec;24(4):285–290. doi: 10.1099/00222615-24-4-285. [DOI] [PubMed] [Google Scholar]
- Georghiou P. R., Hamill R. J., Wright C. E., Versalovic J., Koeuth T., Watson D. A., Lupski J. R. Molecular epidemiology of infections due to Enterobacter aerogenes: identification of hospital outbreak-associated strains by molecular techniques. Clin Infect Dis. 1995 Jan;20(1):84–94. doi: 10.1093/clinids/20.1.84. [DOI] [PubMed] [Google Scholar]
- Grattard F., Pozzetto B., Berthelot P., Rayet I., Ros A., Lauras B., Gaudin O. G. Arbitrarily primed PCR, ribotyping, and plasmid pattern analysis applied to investigation of a nosocomial outbreak due to Enterobacter cloacae in a neonatal intensive care unit. J Clin Microbiol. 1994 Mar;32(3):596–602. doi: 10.1128/jcm.32.3.596-602.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haertl R., Bandlow G. Epidemiological fingerprinting of Enterobacter cloacae by small-fragment restriction endonuclease analysis and pulsed-field gel electrophoresis of genomic restriction fragments. J Clin Microbiol. 1993 Jan;31(1):128–133. doi: 10.1128/jcm.31.1.128-133.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haertl R., Bandlow G. Molecular typing of Enterobacter cloacae by pulsed-field gel electrophoresis of genomic restriction fragments. J Hosp Infect. 1993 Oct;25(2):109–116. doi: 10.1016/0195-6701(93)90101-5. [DOI] [PubMed] [Google Scholar]
- Liu P. Y., Lau Y. J., Hu B. S., Shyr J. M., Shi Z. Y., Tsai W. S., Lin Y. H., Tseng C. Y. Analysis of clonal relationships among isolates of Shigella sonnei by different molecular typing methods. J Clin Microbiol. 1995 Jul;33(7):1779–1783. doi: 10.1128/jcm.33.7.1779-1783.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu P. Y., Shi Z. Y., Lau Y. J., Hu B. S., Shyr J. M., Tsai W. S., Lin Y. H., Tseng C. Y. Epidemiological typing of Flavimonas oryzihabitans by PCR and pulsed-field gel electrophoresis. J Clin Microbiol. 1996 Jan;34(1):68–70. doi: 10.1128/jcm.34.1.68-70.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markowitz S. M., Smith S. M., Williams D. S. Retrospective analysis of plasmid patterns in a study of burn unit outbreaks of infection due to Enterobacter cloacae. J Infect Dis. 1983 Jul;148(1):18–23. doi: 10.1093/infdis/148.1.18. [DOI] [PubMed] [Google Scholar]
- Modi N., Damjanovic V., Cooke R. W. Outbreak of cephalosporin resistant Enterobacter cloacae infection in a neonatal intensive care unit. Arch Dis Child. 1987 Feb;62(2):148–151. doi: 10.1136/adc.62.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Old D. C. Biotyping of Enterobacter cloacae. J Clin Pathol. 1982 Aug;35(8):875–878. doi: 10.1136/jcp.35.8.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riain U. N., Cormican M. G., Flynn J., Smith T., Glennon M. PCR based fingerprinting of Enterobacter cloacae. J Hosp Infect. 1994 Jul;27(3):237–240. doi: 10.1016/0195-6701(94)90131-7. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Barradas M. C., Hamill R. J., Houston E. D., Georghiou P. R., Clarridge J. E., Regnery R. L., Koehler J. E. Genomic fingerprinting of Bartonella species by repetitive element PCR for distinguishing species and isolates. J Clin Microbiol. 1995 May;33(5):1089–1093. doi: 10.1128/jcm.33.5.1089-1093.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995 Sep;33(9):2233–2239. doi: 10.1128/jcm.33.9.2233-2239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VanCouwenberghe C. J., Cohen S. H., Tang Y. J., Gumerlock P. H., Silva J., Jr Genomic fingerprinting of epidemic and endemic strains of Stenotrophomonas maltophilia (formerly Xanthomonas maltophilia) by arbitrarily primed PCR. J Clin Microbiol. 1995 May;33(5):1289–1291. doi: 10.1128/jcm.33.5.1289-1291.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991 Dec 25;19(24):6823–6831. doi: 10.1093/nar/19.24.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods C. R., Jr, Versalovic J., Koeuth T., Lupski J. R. Analysis of relationships among isolates of Citrobacter diversus by using DNA fingerprints generated by repetitive sequence-based primers in the polymerase chain reaction. J Clin Microbiol. 1992 Nov;30(11):2921–2929. doi: 10.1128/jcm.30.11.2921-2929.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Bruijn F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992 Jul;58(7):2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]