Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Dec;34(12):3108–3114. doi: 10.1128/jcm.34.12.3108-3114.1996

RNA amplification by nucleic acid sequence-based amplification with an internal standard enables reliable detection of Chlamydia trachomatis in cervical scrapings and urine samples.

S A Morré 1, P Sillekens 1, M V Jacobs 1, P van Aarle 1, S de Blok 1, B van Gemen 1, J M Walboomers 1, C J Meijer 1, A J van den Brule 1
PMCID: PMC229467  PMID: 8940456

Abstract

In the present study, the suitability of RNA amplification by nucleic acid sequence-based amplification (NASBA) for the detection of Chlamydia trachomatis infection was investigated. When comparing different primer sets for their sensitivities in NASBA, use of both the plasmid and omp1 targets resulted in a detection limit of 1 inclusion-forming unit (IFU), while the 16S rRNA appeared to be the most sensitive RNA target for amplification (10(-3) IFU). In contrast, for DNA amplification by PCR, the plasmid target was optimal (10(-2) IFU), which is 10 times less sensitive than rRNA NASBA. To exclude false negativity in NASBA detection because of inhibition of amplification and/or inefficient sample preparation, an internal standard was developed. The internal control was added prior to sample preparation. This 16S rRNA NASBA with an internal control was compared with a plasmid DNA PCR by using a group of C. trachomatis-negative (n = 41) and -positive (n = 37) cervical scrapings, as determined by enzyme immunoassay (EIA). In addition, urine samples from the EIA-positive women were tested (n = 17). Both NASBA and PCR assays were able to detect C. trachomatis in all EIA-positive cervical scrapings, the corresponding urine samples, and two samples from the EIA-negative group. The internal NASBA standard was found clearly in all EIA-negative samples. In conclusion, these results indicate that detection of C. trachomatis by RNA amplification by NASBA with an internal standard is a suitable and highly sensitive detection method, with potential use in the diagnosis of urogenital C. trachomatis infections with cervical scrapings as well as urine specimens.

Full Text

The Full Text of this article is available as a PDF (302.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An Q., Olive D. M. Molecular cloning and nucleic acid sequencing of Chlamydia trachomatis 16S rRNA genes from patient samples lacking the cryptic plasmid. Mol Cell Probes. 1994 Oct;8(5):429–435. doi: 10.1006/mcpr.1994.1061. [DOI] [PubMed] [Google Scholar]
  2. An Q., Radcliffe G., Vassallo R., Buxton D., O'Brien W. J., Pelletier D. A., Weisburg W. G., Klinger J. D., Olive D. M. Infection with a plasmid-free variant Chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection. J Clin Microbiol. 1992 Nov;30(11):2814–2821. doi: 10.1128/jcm.30.11.2814-2821.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassiri M., Hu H. Y., Domeika M. A., Burczak J., Svensson L. O., Lee H. H., Mårdh P. A. Detection of Chlamydia trachomatis in urine specimens from women by ligase chain reaction. J Clin Microbiol. 1995 Apr;33(4):898–900. doi: 10.1128/jcm.33.4.898-900.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990 Mar;28(3):495–503. doi: 10.1128/jcm.28.3.495-503.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruisten S., van Gemen B., Koppelman M., Rasch M., van Strijp D., Schukkink R., Beyer R., Weigel H., Lens P., Huisman H. Detection of HIV-1 distribution in different blood fractions by two nucleic acid amplification assays. AIDS Res Hum Retroviruses. 1993 Mar;9(3):259–265. doi: 10.1089/aid.1993.9.259. [DOI] [PubMed] [Google Scholar]
  6. Chernesky M. A., Jang D., Lee H., Burczak J. D., Hu H., Sellors J., Tomazic-Allen S. J., Mahony J. B. Diagnosis of Chlamydia trachomatis infections in men and women by testing first-void urine by ligase chain reaction. J Clin Microbiol. 1994 Nov;32(11):2682–2685. doi: 10.1128/jcm.32.11.2682-2685.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cles L. D., Bruch K., Stamm W. E. Staining characteristics of six commercially available monoclonal immunofluorescence reagents for direct diagnosis of Chlamydia trachomatis infections. J Clin Microbiol. 1988 Sep;26(9):1735–1737. doi: 10.1128/jcm.26.9.1735-1737.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Schryver A., Meheus A. Epidemiology of sexually transmitted diseases: the global picture. Bull World Health Organ. 1990;68(5):639–654. [PMC free article] [PubMed] [Google Scholar]
  9. Griffais R., Thibon M. Detection of Chlamydia trachomatis by the polymerase chain reaction. Res Microbiol. 1989 Feb;140(2):139–141. doi: 10.1016/0923-2508(89)90047-8. [DOI] [PubMed] [Google Scholar]
  10. Guatelli J. C., Whitfield K. M., Kwoh D. Y., Barringer K. J., Richman D. D., Gingeras T. R. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1874–1878. doi: 10.1073/pnas.87.5.1874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Halonen P., Rocha E., Hierholzer J., Holloway B., Hyypiä T., Hurskainen P., Pallansch M. Detection of enteroviruses and rhinoviruses in clinical specimens by PCR and liquid-phase hybridization. J Clin Microbiol. 1995 Mar;33(3):648–653. doi: 10.1128/jcm.33.3.648-653.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaschek G., Gaydos C. A., Welsh L. E., Quinn T. C. Direct detection of Chlamydia trachomatis in urine specimens from symptomatic and asymptomatic men by using a rapid polymerase chain reaction assay. J Clin Microbiol. 1993 May;31(5):1209–1212. doi: 10.1128/jcm.31.5.1209-1212.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kievits T., van Gemen B., van Strijp D., Schukkink R., Dircks M., Adriaanse H., Malek L., Sooknanan R., Lens P. NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 1991 Dec;35(3):273–286. doi: 10.1016/0166-0934(91)90069-c. [DOI] [PubMed] [Google Scholar]
  14. Kolk A. H., Noordhoek G. T., de Leeuw O., Kuijper S., van Embden J. D. Mycobacterium smegmatis strain for detection of Mycobacterium tuberculosis by PCR used as internal control for inhibition of amplification and for quantification of bacteria. J Clin Microbiol. 1994 May;32(5):1354–1356. doi: 10.1128/jcm.32.5.1354-1356.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lair S. V., Mirkov T. E., Dodds J. A., Murphy M. F. A single temperature amplification technique applied to the detection of citrus tristeza viral RNA in plant nucleic acid extracts. J Virol Methods. 1994 Apr;47(1-2):141–151. doi: 10.1016/0166-0934(94)90073-6. [DOI] [PubMed] [Google Scholar]
  16. Lan J., Walboomers J. M., Roosendaal R., van Doornum G. J., MacLaren D. M., Meijer C. J., van den Brule A. J. Direct detection and genotyping of Chlamydia trachomatis in cervical scrapes by using polymerase chain reaction and restriction fragment length polymorphism analysis. J Clin Microbiol. 1993 May;31(5):1060–1065. doi: 10.1128/jcm.31.5.1060-1065.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lan J., van den Brule A. J., Hemrika D. J., Risse E. K., Walboomers J. M., Schipper M. E., Meijer C. J. Chlamydia trachomatis and ectopic pregnancy: retrospective analysis of salpingectomy specimens, endometrial biopsies, and cervical smears. J Clin Pathol. 1995 Sep;48(9):815–819. doi: 10.1136/jcp.48.9.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Li J. J., Huang Y. Q., Poiesz B. J., Zaumetzger-Abbot L., Friedman-Kien A. E. Detection of human immunodeficiency virus type 1 (HIV-1) in urine cell pellets from HIV-1-seropositive individuals. J Clin Microbiol. 1992 May;30(5):1051–1055. doi: 10.1128/jcm.30.5.1051-1055.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liou T. C., Chang T. T., Young K. C., Lin X. Z., Lin C. Y., Wu H. L. Detection of HCV RNA in saliva, urine, seminal fluid, and ascites. J Med Virol. 1992 Jul;37(3):197–202. doi: 10.1002/jmv.1890370309. [DOI] [PubMed] [Google Scholar]
  20. Mahony J. B., Luinstra K. E., Sellors J. W., Chernesky M. A. Comparison of plasmid- and chromosome-based polymerase chain reaction assays for detecting Chlamydia trachomatis nucleic acids. J Clin Microbiol. 1993 Jul;31(7):1753–1758. doi: 10.1128/jcm.31.7.1753-1758.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Meddens M. J., Quint W. G., van der Willigen H., Wagenvoort J. T., v Dijk W. C., Lindeman J., Herbrink P. Detection of Chlamydia trachomatis in culture and urogenital smears by in situ DNA hybridization using a biotinylated DNA probe. Mol Cell Probes. 1988 Dec;2(4):261–269. doi: 10.1016/0890-8508(88)90010-2. [DOI] [PubMed] [Google Scholar]
  22. Miettinen A., Vuorinen P., Varis T., Hällström O. Comparison of enzyme immunoassay antigen detection, nucleic acid hybridization and PCR assay in the diagnosis of Chlamydia trachomatis infection. Eur J Clin Microbiol Infect Dis. 1995 Jun;14(6):546–549. doi: 10.1007/BF02113438. [DOI] [PubMed] [Google Scholar]
  23. Muesing M. A., Smith D. H., Cabradilla C. D., Benton C. V., Lasky L. A., Capon D. J. Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature. 1985 Feb 7;313(6002):450–458. doi: 10.1038/313450a0. [DOI] [PubMed] [Google Scholar]
  24. Muir P., Nicholson F., Jhetam M., Neogi S., Banatvala J. E. Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical specimens. J Clin Microbiol. 1993 Jan;31(1):31–38. doi: 10.1128/jcm.31.1.31-38.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ossewaarde J. M., Rieffe M., Rozenberg-Arska M., Ossenkoppele P. M., Nawrocki R. P., van Loon A. M. Development and clinical evaluation of a polymerase chain reaction test for detection of Chlamydia trachomatis. J Clin Microbiol. 1992 Aug;30(8):2122–2128. doi: 10.1128/jcm.30.8.2122-2128.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peterson E. M., Markoff B. A., Schachter J., de la Maza L. M. The 7.5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid. 1990 Mar;23(2):144–148. doi: 10.1016/0147-619x(90)90033-9. [DOI] [PubMed] [Google Scholar]
  27. Ratnamohan V. M., Mathÿs J. M., McKenzie A., Cunningham A. L. HCMV-DNA is detected more frequently than infectious virus in blood leucocytes of immunocompromised patients: a direct comparison of culture-immunofluorescence and PCR for detection of HCMV in clinical specimens. J Med Virol. 1992 Dec;38(4):252–259. doi: 10.1002/jmv.1890380405. [DOI] [PubMed] [Google Scholar]
  28. Ridgway G. L., Taylor-Robinson D. Current problems in microbiology: 1. Chlamydial infections: which laboratory test? J Clin Pathol. 1991 Jan;44(1):1–5. doi: 10.1136/jcp.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roosendaal R., Walboomers J. M., Veltman O. R., Melgers I., Burger C., Bleker O. P., MacClaren D. M., Meijer C. J., van den Brule A. J. Comparison of different primer sets for detection of Chlamydia trachomatis by the polymerase chain reaction. J Med Microbiol. 1993 Jun;38(6):426–433. doi: 10.1099/00222615-38-6-426. [DOI] [PubMed] [Google Scholar]
  30. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  31. Schachter J., Stamm W. E., Quinn T. C., Andrews W. W., Burczak J. D., Lee H. H. Ligase chain reaction to detect Chlamydia trachomatis infection of the cervix. J Clin Microbiol. 1994 Oct;32(10):2540–2543. doi: 10.1128/jcm.32.10.2540-2543.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taylor-Robinson D., Thomas B. J. Laboratory techniques for the diagnosis of chlamydial infections. Genitourin Med. 1991 Jun;67(3):256–266. doi: 10.1136/sti.67.3.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ursi J. P., Ursi D., Ieven M., Pattyn S. R. Utility of an internal control for the polymerase chain reaction. Application to detection of Mycoplasma pneumoniae in clinical specimens. APMIS. 1992 Jul;100(7):635–639. doi: 10.1111/j.1699-0463.1992.tb03978.x. [DOI] [PubMed] [Google Scholar]
  34. Uyttendaele M., Schukkink R., van Gemen B., Debevere J. Detection of Campylobacter jejuni added to foods by using a combined selective enrichment and nucleic acid sequence-based amplification (NASBA). Appl Environ Microbiol. 1995 Apr;61(4):1341–1347. doi: 10.1128/aem.61.4.1341-1347.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Doornum G. J., Buimer M., Prins M., Henquet C. J., Coutinho R. A., Plier P. K., Tomazic-Allen S., Hu H., Lee H. Detection of Chlamydia trachomatis infection in urine samples from men and women by ligase chain reaction. J Clin Microbiol. 1995 Aug;33(8):2042–2047. doi: 10.1128/jcm.33.8.2042-2047.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van Gemen B., Kievits T., Nara P., Huisman H. G., Jurriaans S., Goudsmit J., Lens P. Qualitative and quantitative detection of HIV-1 RNA by nucleic acid sequence-based amplification. AIDS. 1993 Nov;7 (Suppl 2):S107–S110. doi: 10.1097/00002030-199311002-00020. [DOI] [PubMed] [Google Scholar]
  37. van Gemen B., Kievits T., Schukkink R., van Strijp D., Malek L. T., Sooknanan R., Huisman H. G., Lens P. Quantification of HIV-1 RNA in plasma using NASBA during HIV-1 primary infection. J Virol Methods. 1993 Jul;43(2):177–187. doi: 10.1016/0166-0934(93)90075-3. [DOI] [PubMed] [Google Scholar]
  38. van Gemen B., van Beuningen R., Nabbe A., van Strijp D., Jurriaans S., Lens P., Kievits T. A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminescent (ECL) labelled probes. J Virol Methods. 1994 Sep;49(2):157–167. doi: 10.1016/0166-0934(94)90040-x. [DOI] [PubMed] [Google Scholar]
  39. van der Vliet G. M., Schepers P., Schukkink R. A., van Gemen B., Klatser P. R. Assessment of mycobacterial viability by RNA amplification. Antimicrob Agents Chemother. 1994 Sep;38(9):1959–1965. doi: 10.1128/aac.38.9.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. van der Vliet G. M., Schukkink R. A., van Gemen B., Schepers P., Klatser P. R. Nucleic acid sequence-based amplification (NASBA) for the identification of mycobacteria. J Gen Microbiol. 1993 Oct;139(10):2423–2429. doi: 10.1099/00221287-139-10-2423. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES