Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Dec;34(12):3129–3137. doi: 10.1128/jcm.34.12.3129-3137.1996

Differentiation of bacterial 16S rRNA genes and intergenic regions and Mycobacterium tuberculosis katG genes by structure-specific endonuclease cleavage.

M A Brow 1, M C Oldenburg 1, V Lyamichev 1, L M Heisler 1, N Lyamicheva 1, J G Hall 1, N J Eagan 1, D M Olive 1, L M Smith 1, L Fors 1, J E Dahlberg 1
PMCID: PMC229470  PMID: 8940459

Abstract

We describe here a new approach for analyzing nucleic acid sequences using a structure-specific endonuclease, Cleavase I. We have applied this technique to the detection and localization of mutations associated with isoniazid resistance in Mycobacterium tuberculosis and for differentiating bacterial genera, species and strains. The technique described here is based on the observation that single strands of DNAs can assume defined conformations, which can be detected and cleaved by structure-specific endonucleases such as Cleavase I. The patterns of fragments produced are characteristic of the sequences responsible for the structure, so that each DNA has its own structural fingerprint. Amplicons, containing either a single 5'-fluorescein or 5'-tetramethyl rhodamine label were generated from a 620-bp segment of the katG gene of isoniazid-resistant and -sensitive M. tuberculosis, the 5' 350 bp of the 16S rRNA genes of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella enteritidis, Salmonella arizonae, Shigella sonnei, Shigella dysenteriae, Campylobacter jejuni, staphylococcus, hominis, Staphylococcus warneri, and Staphylococcus aureus and an approximately 550-bp DNA segment comprising the intergenic region between the 16S and 23S rRNA genes of Salmonella typhimurium, Salmonella enteritidis, Salmonella arizonae, Shigella sonnei, and Shigella dysenteriae serotypes 1, 2, and 8. Changes in the structural fingerprints of DNA fragments derived from the katG genes of isoniazid-resistant M. tuberculosis isolates were clearly identified and could be mapped to the site of the actual mutation relative to the labeled end. Bland patterns which clearly differentiated bacteria to the level of genus and, in some cases, species were generated from the 16S genes. Cleavase I analysis of the intergenic regions of Salmonella and Shigella species differentiated genus, species, and serotypes. Structural fingerprinting by digestion with Cleavase I is a rapid, simple, and sensitive method for analyzing nucleic acid sequences and may find wide utility in microbial analysis.

Full Text

The Full Text of this article is available as a PDF (603.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altamirano M., Delaney A., Wong A., Marostenmaki J., Pi D. Identification of hepatitis C virus genotypes among hospitalized patients in British Columbia, Canada. J Infect Dis. 1995 Apr;171(4):1034–1038. doi: 10.1093/infdis/171.4.1034. [DOI] [PubMed] [Google Scholar]
  2. Arbeit R. D., Slutsky A., Barber T. W., Maslow J. N., Niemczyk S., Falkinham J. O., 3rd, O'Connor G. T., von Reyn C. F. Genetic diversity among strains of Mycobacterium avium causing monoclonal and polyclonal bacteremia in patients with AIDS. J Infect Dis. 1993 Jun;167(6):1384–1390. doi: 10.1093/infdis/167.6.1384. [DOI] [PubMed] [Google Scholar]
  3. Arthur M., Arbeit R. D., Kim C., Beltran P., Crowe H., Steinbach S., Campanelli C., Wilson R. A., Selander R. K., Goldstein R. Restriction fragment length polymorphisms among uropathogenic Escherichia coli isolates: pap-related sequences compared with rrn operons. Infect Immun. 1990 Feb;58(2):471–479. doi: 10.1128/iai.58.2.471-479.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cockerill F. R., 3rd, Uhl J. R., Temesgen Z., Zhang Y., Stockman L., Roberts G. D., Williams D. L., Kline B. C. Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance. J Infect Dis. 1995 Jan;171(1):240–245. doi: 10.1093/infdis/171.1.240. [DOI] [PubMed] [Google Scholar]
  5. Conner B. J., Reyes A. A., Morin C., Itakura K., Teplitz R. L., Wallace R. B. Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci U S A. 1983 Jan;80(1):278–282. doi: 10.1073/pnas.80.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giebel L. B., Tripathi R. K., King R. A., Spritz R. A. A tyrosinase gene missense mutation in temperature-sensitive type I oculocutaneous albinism. A human homologue to the Siamese cat and the Himalayan mouse. J Clin Invest. 1991 Mar;87(3):1119–1122. doi: 10.1172/JCI115075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kapur V., Li L. L., Iordanescu S., Hamrick M. R., Wanger A., Kreiswirth B. N., Musser J. M. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol. 1994 Apr;32(4):1095–1098. doi: 10.1128/jcm.32.4.1095-1098.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  9. Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  10. Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
  11. Poh C. L., Yeo C. C., Tay L. Genome fingerprinting by pulsed-field gel electrophoresis and ribotyping to differentiate Pseudomonas aeruginosa serotype O11 strains. Eur J Clin Microbiol Infect Dis. 1992 Sep;11(9):817–822. doi: 10.1007/BF01960881. [DOI] [PubMed] [Google Scholar]
  12. Rabkin C. S., Jarvis W. R., Anderson R. L., Govan J., Klinger J., LiPuma J., Martone W. J., Monteil H., Richard C., Shigeta S. Pseudomonas cepacia typing systems: collaborative study to assess their potential in epidemiologic investigations. Rev Infect Dis. 1989 Jul-Aug;11(4):600–607. doi: 10.1093/clinids/11.4.600. [DOI] [PubMed] [Google Scholar]
  13. Saiki R. K., Chang C. A., Levenson C. H., Warren T. C., Boehm C. D., Kazazian H. H., Jr, Erlich H. A. Diagnosis of sickle cell anemia and beta-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N Engl J Med. 1988 Sep 1;319(9):537–541. doi: 10.1056/NEJM198809013190903. [DOI] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sarkar G., Yoon H. S., Sommer S. S. Dideoxy fingerprinting (ddE): a rapid and efficient screen for the presence of mutations. Genomics. 1992 Jun;13(2):441–443. doi: 10.1016/0888-7543(92)90266-u. [DOI] [PubMed] [Google Scholar]
  16. Saulnier P., Bourneix C., Prévost G., Andremont A. Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1993 Apr;31(4):982–985. doi: 10.1128/jcm.31.4.982-985.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  18. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  19. Tenover F. C., Arbeit R., Archer G., Biddle J., Byrne S., Goering R., Hancock G., Hébert G. A., Hill B., Hollis R. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J Clin Microbiol. 1994 Feb;32(2):407–415. doi: 10.1128/jcm.32.2.407-415.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tripathi R. K., Bundey S., Musarella M. A., Droetto S., Strunk K. M., Holmes S. A., Spritz R. A. Mutations of the tyrosinase gene in Indo-Pakistani patients with type I (tyrosinase-deficient) oculocutaneous albinism (OCA). Am J Hum Genet. 1993 Dec;53(6):1173–1179. [PMC free article] [PubMed] [Google Scholar]
  21. Widjojoatmodjo M. N., Fluit A. C., Verhoef J. Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol. 1995 Oct;33(10):2601–2606. doi: 10.1128/jcm.33.10.2601-2606.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woods C. R., Jr, Versalovic J., Koeuth T., Lupski J. R. Analysis of relationships among isolates of Citrobacter diversus by using DNA fingerprints generated by repetitive sequence-based primers in the polymerase chain reaction. J Clin Microbiol. 1992 Nov;30(11):2921–2929. doi: 10.1128/jcm.30.11.2921-2929.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES