Abstract
Sequence analyses 5' ends of the 60-kDa cysteine-rich outer membrane protein genes (Omp2) of Chlamydia psittaci and Chlamydia pecorum strains indicate that these species have approximately 70% nucleotide identity. On the basis of this sequence information, PCR primers were designed to allow the specific amplification of DNA extracted from C. psittaci S26/3 (abortion strain), P94/1 (pigeon strain), and C. pecorum W73 (fecal strain) in one reaction tube. By using nested reactions (with primers PCR-D1 and PCR-D2 followed by the specific primers and PCR-D2), 0.6, 0.2, and 8 inclusion-forming units of S26/3, P94/1 (both diluted in tissue culture-negative placental material), and W73 (diluted in culture-negative fecal material) per ml, respectively, were detected. The differentiation of C. psittaci and C. pecorum strains of ovine and bovine origins was carried out, and the results were in agreement with those obtained from AluI restriction enzyme analysis of DNA amplified from corresponding strains by PCR. This approach allows the simultaneous detection and typing of C. psittaci and C. pecorum strains and the identification of samples containing both species.
Full Text
The Full Text of this article is available as a PDF (305.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen A. A. Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test. J Clin Microbiol. 1991 Apr;29(4):707–711. doi: 10.1128/jcm.29.4.707-711.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson I. E., Baxter S. I., Dunbar S., Rae A. G., Philips H. L., Clarkson M. J., Herring A. J. Analyses of the genomes of chlamydial isolates from ruminants and pigs support the adoption of the new species Chlamydia pecorum. Int J Syst Bacteriol. 1996 Jan;46(1):245–251. doi: 10.1099/00207713-46-1-245. [DOI] [PubMed] [Google Scholar]
- Anderson I. E., Baxter T. A. Chlamydia psittaci: inclusion morphology in cell culture and virulence in mice of ovine isolates. Vet Rec. 1986 Nov 1;119(18):453–454. doi: 10.1136/vr.119.18.453. [DOI] [PubMed] [Google Scholar]
- Barnes R. C., Wang S. P., Kuo C. C., Stamm W. E. Rapid immunotyping of Chlamydia trachomatis with monoclonal antibodies in a solid-phase enzyme immunoassay. J Clin Microbiol. 1985 Oct;22(4):609–613. doi: 10.1128/jcm.22.4.609-613.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Black C. M., Tharpe J. A., Russell H. Distinguishing Chlamydia species by restriction analysis of the major outer membrane protein gene. Mol Cell Probes. 1992 Oct;6(5):395–400. doi: 10.1016/0890-8508(92)90033-t. [DOI] [PubMed] [Google Scholar]
- Dean D., Stephens R. S. Identification of individual genotypes of Chlamydia trachomatis from experimentally mixed serovars and mixed infections among trachoma patients. J Clin Microbiol. 1994 Jun;32(6):1506–1510. doi: 10.1128/jcm.32.6.1506-1510.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denamur E., Sayada C., Souriau A., Orfila J., Rodolakis A., Elion J. Restriction pattern of the major outer-membrane protein gene provides evidence for a homogeneous invasive group among ruminant isolates of Chlamydia psittaci. J Gen Microbiol. 1991 Nov;137(11):2525–2530. doi: 10.1099/00221287-137-11-2525. [DOI] [PubMed] [Google Scholar]
- Everett K. D., Hatch T. P. Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC. J Bacteriol. 1991 Jun;173(12):3821–3830. doi: 10.1128/jb.173.12.3821-3830.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frost E. H., Deslandes S., Veilleux S., Bourgaux-Ramoisy D. Typing Chlamydia trachomatis by detection of restriction fragment length polymorphism in the gene encoding the major outer membrane protein. J Infect Dis. 1991 May;163(5):1103–1107. doi: 10.1093/infdis/163.5.1103. [DOI] [PubMed] [Google Scholar]
- Fukushi H., Hirai K. Immunochemical diversity of the major outer membrane protein of avian and mammalian Chlamydia psittaci. J Clin Microbiol. 1988 Apr;26(4):675–680. doi: 10.1128/jcm.26.4.675-680.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukushi H., Hirai K. Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int J Syst Bacteriol. 1992 Apr;42(2):306–308. doi: 10.1099/00207713-42-2-306. [DOI] [PubMed] [Google Scholar]
- Herring A. J. Typing Chlamydia psittaci--a review of methods and recent findings. Br Vet J. 1993 Sep-Oct;149(5):455–475. doi: 10.1016/S0007-1935(05)80111-3. [DOI] [PubMed] [Google Scholar]
- Kaltenboeck B., Kousoulas K. G., Storz J. Two-step polymerase chain reactions and restriction endonuclease analyses detect and differentiate ompA DNA of Chlamydia spp. J Clin Microbiol. 1992 May;30(5):1098–1104. doi: 10.1128/jcm.30.5.1098-1104.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato N., Ou C. Y., Kato H., Bartley S. L., Luo C. C., Killgore G. E., Ueno K. Detection of toxigenic Clostridium difficile in stool specimens by the polymerase chain reaction. J Infect Dis. 1993 Feb;167(2):455–458. doi: 10.1093/infdis/167.2.455. [DOI] [PubMed] [Google Scholar]
- Lan J., Ossewaarde J. M., Walboomers J. M., Meijer C. J., van den Brule A. J. Improved PCR sensitivity for direct genotyping of Chlamydia trachomatis serovars by using a nested PCR. J Clin Microbiol. 1994 Feb;32(2):528–530. doi: 10.1128/jcm.32.2.528-530.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maass M., Dalhoff K. Comparison of sample preparation methods for detection of Chlamydia pneumoniae in bronchoalveolar lavage fluid by PCR. J Clin Microbiol. 1994 Oct;32(10):2616–2619. doi: 10.1128/jcm.32.10.2616-2619.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClenaghan M., Herring A. J., Aitken I. D. Comparison of Chlamydia psittaci isolates by DNA restriction endonuclease analysis. Infect Immun. 1984 Aug;45(2):384–389. doi: 10.1128/iai.45.2.384-389.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen S. J., Douglas F. P., Timms P. PCR detection and differentiation of Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia trachomatis. Mol Cell Probes. 1992 Oct;6(5):389–394. doi: 10.1016/0890-8508(92)90032-s. [DOI] [PubMed] [Google Scholar]
- Rodolakis A., Souriau A. Variations in the virulence of strains of Chlamydia psittaci for pregnant ewes. Vet Rec. 1989 Jul 22;125(4):87–90. doi: 10.1136/vr.125.4.87. [DOI] [PubMed] [Google Scholar]
- Spears P., Storz J. Biotyping of Chlamydia psittaci based on inclusion morphology and response to diethylaminoethyl-dextran and cycloheximide. Infect Immun. 1979 Apr;24(1):224–232. doi: 10.1128/iai.24.1.224-232.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S. P., Grayston J. T. Serotyping of Chlamydia trachomatis by indirect fluorescent-antibody staining of inclusions in cell culture with monoclonal antibodies. J Clin Microbiol. 1991 Jul;29(7):1295–1298. doi: 10.1128/jcm.29.7.1295-1298.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson M. W., Lambden P. R., Clarke I. N. Genetic diversity and identification of human infection by amplification of the chlamydial 60-kilodalton cysteine-rich outer membrane protein gene. J Clin Microbiol. 1991 Jun;29(6):1188–1193. doi: 10.1128/jcm.29.6.1188-1193.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson M. W., Lambden P. R., Clarke I. N. The nucleotide sequence of the 60 kDa cysteine rich outer membrane protein of Chlamydia psittaci strain EAE/A22/M. Nucleic Acids Res. 1990 Sep 11;18(17):5300–5300. doi: 10.1093/nar/18.17.5300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson M. W., al-Mahdawi S., Lamden P. R., Clarke I. N. The nucleotide sequence of the 60 kDa cysteine rich outer membrane protein of Chlamydia pneumoniae strain IOL-207. Nucleic Acids Res. 1990 Sep 11;18(17):5299–5299. doi: 10.1093/nar/18.17.5299. [DOI] [PMC free article] [PubMed] [Google Scholar]