Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Jan;35(1):11–19. doi: 10.1128/jcm.35.1.11-19.1997

Human papillomavirus type 16 sequence variants: identification by E6 and L1 lineage-specific hybridization.

C M Wheeler 1, T Yamada 1, A Hildesheim 1, S A Jenison 1
PMCID: PMC229505  PMID: 8968874

Abstract

A catalog of human papillomavirus (HPV) type 16 (HPV-16) E6 and L1 signature nucleotides was used to develop PCR-based oligonucleotide probe systems capable of distinguishing HPV-16 class and subclass variants. Twenty-three E6-specific oligonucleotide probes targeting 13 variant nucleotide positions and 12 L1-specific oligonucleotide probes targeting 6 variant nucleotide positions were used to characterize HPV-16-containing cervicovaginal lavage specimens. Nucleotide positions that could be distinguished included E6 nucleotides 109, 131, 132, 143, 145, 178, 183, 286, 289, 335, 350, 403, and 532 and L1 nucleotides 6695, 6721, 6803, 6854, 6862, and 6994. Combined hybridization patterns were assigned on the basis of the predicted HPV-16 class, subclass, or minor class variants described previously (T. Yamada, C. M. Wheeler, A. L. Halpern, A.-C. M. Stewart, A. Hildesheim, and S.A. Jenison, J. Virol. 69:7743-7753, 1995). The major HPV-16 variant lineages detected included European prototype-like (E-P), Asian (As), Asian-American (AA), and African (Af1 and Af2) lineages. In addition, E-G131, an E-class variant, and AA-G183, an AA-class variant, were also identified. For each clinical specimen, DNA hybridization results were compared to nucleotide sequence determinations. Targeted L1 and E6 marker nucleotides covaried within all HPV-16 variant isolates examined. These hybridization-based methods result in minimal misclassification error, are amenable to targeting additional lineage-specific nucleotide positions, and should facilitate the large-scale, low-cost analysis of HPV-16 variants in epidemiologic investigations. Specifically, these methods will facilitate epidemiologic studies of HPV-16 transmission and natural history, as well as studies of associations between HPV variants, host immune responses, and cervical neoplasia.

Full Text

The Full Text of this article is available as a PDF (240.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer H. M., Hildesheim A., Schiffman M. H., Glass A. G., Rush B. B., Scott D. R., Cadell D. M., Kurman R. J., Manos M. M. Determinants of genital human papillomavirus infection in low-risk women in Portland, Oregon. Sex Transm Dis. 1993 Sep-Oct;20(5):274–278. doi: 10.1097/00007435-199309000-00007. [DOI] [PubMed] [Google Scholar]
  2. Becker T. M., Wheeler C. M., McGough N. S., Parmenter C. A., Jordan S. W., Stidley C. A., McPherson R. S., Dorin M. H. Sexually transmitted diseases and other risk factors for cervical dysplasia among southwestern Hispanic and non-Hispanic white women. JAMA. 1994 Apr 20;271(15):1181–1188. [PubMed] [Google Scholar]
  3. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  4. Bubb V., McCance D. J., Schlegel R. DNA sequence of the HPV-16 E5 ORF and the structural conservation of its encoded protein. Virology. 1988 Mar;163(1):243–246. doi: 10.1016/0042-6822(88)90259-0. [DOI] [PubMed] [Google Scholar]
  5. Chan S. Y., Ho L., Ong C. K., Chow V., Drescher B., Dürst M., ter Meulen J., Villa L., Luande J., Mgaya H. N. Molecular variants of human papillomavirus type 16 from four continents suggest ancient pandemic spread of the virus and its coevolution with humankind. J Virol. 1992 Apr;66(4):2057–2066. doi: 10.1128/jvi.66.4.2057-2066.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deau M. C., Favre M., Jablonska S., Rueda L. A., Orth G. Genetic heterogeneity of oncogenic human papillomavirus type 5 (HPV5) and phylogeny of HPV5 variants associated with epidermodysplasia verruciformis. J Clin Microbiol. 1993 Nov;31(11):2918–2926. doi: 10.1128/jcm.31.11.2918-2926.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deau M. C., Favre M., Orth G. Genetic heterogeneity among human papillomaviruses (HPV) associated with epidermodysplasia verruciformis: evidence for multiple allelic forms of HPV5 and HPV8 E6 genes. Virology. 1991 Oct;184(2):492–503. doi: 10.1016/0042-6822(91)90419-c. [DOI] [PubMed] [Google Scholar]
  8. Ellis J. R., Keating P. J., Baird J., Hounsell E. F., Renouf D. V., Rowe M., Hopkins D., Duggan-Keen M. F., Bartholomew J. S., Young L. S. The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nat Med. 1995 May;1(5):464–470. doi: 10.1038/nm0595-464. [DOI] [PubMed] [Google Scholar]
  9. Eluf-Neto J., Booth M., Muñoz N., Bosch F. X., Meijer C. J., Walboomers J. M. Human papillomavirus and invasive cervical cancer in Brazil. Br J Cancer. 1994 Jan;69(1):114–119. doi: 10.1038/bjc.1994.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eschle D., Dürst M., ter Meulen J., Luande J., Eberhardt H. C., Pawlita M., Gissmann L. Geographical dependence of sequence variation in the E7 gene of human papillomavirus type 16. J Gen Virol. 1992 Jul;73(Pt 7):1829–1832. doi: 10.1099/0022-1317-73-7-1829. [DOI] [PubMed] [Google Scholar]
  11. Franco E. L., Villa L. L., Rahal P., Ruiz A. Molecular variant analysis as an epidemiological tool to study persistence of cervical human papillomavirus infection. J Natl Cancer Inst. 1994 Oct 19;86(20):1558–1559. doi: 10.1093/jnci/86.20.1558. [DOI] [PubMed] [Google Scholar]
  12. Fujinaga Y., Okazawa K., Nishikawa A., Yamakawa Y., Fukushima M., Kato I., Fujinaga K. Sequence variation of human papillomavirus type 16 E7 in preinvasive and invasive cervical neoplasias. Virus Genes. 1994 Sep;9(1):85–92. doi: 10.1007/BF01703438. [DOI] [PubMed] [Google Scholar]
  13. Gravitt P. E., Manos M. M. Polymerase chain reaction-based methods for the detection of human papillomavirus DNA. IARC Sci Publ. 1992;(119):121–133. [PubMed] [Google Scholar]
  14. Halbert C. L., Galloway D. A. Identification of the E5 open reading frame of human papillomavirus type 16. J Virol. 1988 Mar;62(3):1071–1075. doi: 10.1128/jvi.62.3.1071-1075.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hecht J. L., Kadish A. S., Jiang G., Burk R. D. Genetic characterization of the human papillomavirus (HPV) 18 E2 gene in clinical specimens suggests the presence of a subtype with decreased oncogenic potential. Int J Cancer. 1995 Jan 27;60(3):369–376. doi: 10.1002/ijc.2910600317. [DOI] [PubMed] [Google Scholar]
  16. Heinzel P. A., Chan S. Y., Ho L., O'Connor M., Balaram P., Campo M. S., Fujinaga K., Kiviat N., Kuypers J., Pfister H. Variation of human papillomavirus type 6 (HPV-6) and HPV-11 genomes sampled throughout the world. J Clin Microbiol. 1995 Jul;33(7):1746–1754. doi: 10.1128/jcm.33.7.1746-1754.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hildesheim A., Gravitt P., Schiffman M. H., Kurman R. J., Barnes W., Jones S., Tchabo J. G., Brinton L. A., Copeland C., Epp J. Determinants of genital human papillomavirus infection in low-income women in Washington, D.C. Sex Transm Dis. 1993 Sep-Oct;20(5):279–285. doi: 10.1097/00007435-199309000-00008. [DOI] [PubMed] [Google Scholar]
  18. Hildesheim A., Schiffman M. H., Gravitt P. E., Glass A. G., Greer C. E., Zhang T., Scott D. R., Rush B. B., Lawler P., Sherman M. E. Persistence of type-specific human papillomavirus infection among cytologically normal women. J Infect Dis. 1994 Feb;169(2):235–240. doi: 10.1093/infdis/169.2.235. [DOI] [PubMed] [Google Scholar]
  19. Ho G. Y., Burk R. D., Klein S., Kadish A. S., Chang C. J., Palan P., Basu J., Tachezy R., Lewis R., Romney S. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst. 1995 Sep 20;87(18):1365–1371. doi: 10.1093/jnci/87.18.1365. [DOI] [PubMed] [Google Scholar]
  20. Ho L., Chan S. Y., Chow V., Chong T., Tay S. K., Villa L. L., Bernard H. U. Sequence variants of human papillomavirus type 16 in clinical samples permit verification and extension of epidemiological studies and construction of a phylogenetic tree. J Clin Microbiol. 1991 Sep;29(9):1765–1772. doi: 10.1128/jcm.29.9.1765-1772.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Icenogle J. P., Clancy K. A., Lin S. Y. Sequence variation in the capsid protein genes of human papillomavirus type 16 and type 31. Virology. 1995 Dec 20;214(2):664–669. doi: 10.1006/viro.1995.0082. [DOI] [PubMed] [Google Scholar]
  22. Icenogle J. P., Laga M., Miller D., Manoka A. T., Tucker R. A., Reeves W. C. Genotypes and sequence variants of human papillomavirus DNAs from human immunodeficiency virus type 1-infected women with cervical intraepithelial neoplasia. J Infect Dis. 1992 Dec;166(6):1210–1216. doi: 10.1093/infdis/166.6.1210. [DOI] [PubMed] [Google Scholar]
  23. Icenogle J. P., Sathya P., Miller D. L., Tucker R. A., Rawls W. E. Nucleotide and amino acid sequence variation in the L1 and E7 open reading frames of human papillomavirus type 6 and type 16. Virology. 1991 Sep;184(1):101–107. doi: 10.1016/0042-6822(91)90826-w. [DOI] [PubMed] [Google Scholar]
  24. Jacobs M. V., de Roda Husman A. M., van den Brule A. J., Snijders P. J., Meijer C. J., Walboomers J. M. Group-specific differentiation between high- and low-risk human papillomavirus genotypes by general primer-mediated PCR and two cocktails of oligonucleotide probes. J Clin Microbiol. 1995 Apr;33(4):901–905. doi: 10.1128/jcm.33.4.901-905.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kirnbauer R., Taub J., Greenstone H., Roden R., Dürst M., Gissmann L., Lowy D. R., Schiller J. T. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993 Dec;67(12):6929–6936. doi: 10.1128/jvi.67.12.6929-6936.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Koutsky L. A., Holmes K. K., Critchlow C. W., Stevens C. E., Paavonen J., Beckmann A. M., DeRouen T. A., Galloway D. A., Vernon D., Kiviat N. B. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med. 1992 Oct 29;327(18):1272–1278. doi: 10.1056/NEJM199210293271804. [DOI] [PubMed] [Google Scholar]
  27. Lungu O., Sun X. W., Wright T. C., Jr, Ferenczy A., Richart R. M., Silverstein S. A polymerase chain reaction-enzyme-linked immunosorbent assay method for detecting human papillomavirus in cervical carcinomas and high-grade cervical cancer precursors. Obstet Gynecol. 1995 Mar;85(3):337–342. doi: 10.1016/0029-7844(94)00399-x. [DOI] [PubMed] [Google Scholar]
  28. Matsukura T., Kanda T., Furuno A., Yoshikawa H., Kawana T., Yoshiike K. Cloning of monomeric human papillomavirus type 16 DNA integrated within cell DNA from a cervical carcinoma. J Virol. 1986 Jun;58(3):979–982. doi: 10.1128/jvi.58.3.979-982.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morrison E. A., Ho G. Y., Vermund S. H., Goldberg G. L., Kadish A. S., Kelley K. F., Burk R. D. Human papillomavirus infection and other risk factors for cervical neoplasia: a case-control study. Int J Cancer. 1991 Aug 19;49(1):6–13. doi: 10.1002/ijc.2910490103. [DOI] [PubMed] [Google Scholar]
  30. Muñoz N., Bosch F. X. HPV and cervical neoplasia: review of case-control and cohort studies. IARC Sci Publ. 1992;(119):251–261. [PubMed] [Google Scholar]
  31. Muñoz N., Bosch F. X., de Sanjosé S., Tafur L., Izarzugaza I., Gili M., Viladiu P., Navarro C., Martos C., Ascunce N. The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain. Int J Cancer. 1992 Nov 11;52(5):743–749. doi: 10.1002/ijc.2910520513. [DOI] [PubMed] [Google Scholar]
  32. Ong C. K., Chan S. Y., Campo M. S., Fujinaga K., Mavromara-Nazos P., Labropoulou V., Pfister H., Tay S. K., ter Meulen J., Villa L. L. Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J Virol. 1993 Nov;67(11):6424–6431. doi: 10.1128/jvi.67.11.6424-6431.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parton A. Nucleotide sequence of the HPV16 L1 open reading frame. Nucleic Acids Res. 1990 Jun 25;18(12):3631–3631. doi: 10.1093/nar/18.12.3631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pushko P., Sasagawa T., Cuzick J., Crawford L. Sequence variation in the capsid protein genes of human papillomavirus type 16. J Gen Virol. 1994 Apr;75(Pt 4):911–916. doi: 10.1099/0022-1317-75-4-911. [DOI] [PubMed] [Google Scholar]
  35. Ramesar J. E., Rybicki E. P., Williamson A. L. Sequence variation in the L1 gene of human papillomavirus type 16 from Africa. Arch Virol. 1995;140(10):1863–1870. doi: 10.1007/BF01384349. [DOI] [PubMed] [Google Scholar]
  36. Resnick R. M., Cornelissen M. T., Wright D. K., Eichinger G. H., Fox H. S., ter Schegget J., Manos M. M. Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J Natl Cancer Inst. 1990 Sep 19;82(18):1477–1484. doi: 10.1093/jnci/82.18.1477. [DOI] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schiffman M. H., Bauer H. M., Hoover R. N., Glass A. G., Cadell D. M., Rush B. B., Scott D. R., Sherman M. E., Kurman R. J., Wacholder S. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst. 1993 Jun 16;85(12):958–964. doi: 10.1093/jnci/85.12.958. [DOI] [PubMed] [Google Scholar]
  39. Seedorf K., Krämmer G., Dürst M., Suhai S., Röwekamp W. G. Human papillomavirus type 16 DNA sequence. Virology. 1985 Aug;145(1):181–185. doi: 10.1016/0042-6822(85)90214-4. [DOI] [PubMed] [Google Scholar]
  40. Smits H. L., Traanberg K. F., Krul M. R., Prussia P. R., Kuiken C. L., Jebbink M. F., Kleyne J. A., van den Berg R. H., Capone B., de Bruyn A. Identification of a unique group of human papillomavirus type 16 sequence variants among clinical isolates from Barbados. J Gen Virol. 1994 Sep;75(Pt 9):2457–2462. doi: 10.1099/0022-1317-75-9-2457. [DOI] [PubMed] [Google Scholar]
  41. Stewart A. C., Eriksson A. M., Manos M. M., Muñoz N., Bosch F. X., Peto J., Wheeler C. M. Intratype variation in 12 human papillomavirus types: a worldwide perspective. J Virol. 1996 May;70(5):3127–3136. doi: 10.1128/jvi.70.5.3127-3136.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stöppler M. C., Ching K., Stöppler H., Clancy K., Schlegel R., Icenogle J. Natural variants of the human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation. J Virol. 1996 Oct;70(10):6987–6993. doi: 10.1128/jvi.70.10.6987-6993.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tieben L. M., ter Schegget J., Minnaar R. P., Bouwes Bavinck J. N., Berkhout R. J., Vermeer B. J., Jebbink M. F., Smits H. L. Detection of cutaneous and genital HPV types in clinical samples by PCR using consensus primers. J Virol Methods. 1993 May;42(2-3):265–279. doi: 10.1016/0166-0934(93)90038-s. [DOI] [PubMed] [Google Scholar]
  44. Wheeler C. M., Parmenter C. A., Hunt W. C., Becker T. M., Greer C. E., Hildesheim A., Manos M. M. Determinants of genital human papillomavirus infection among cytologically normal women attending the University of New Mexico student health center. Sex Transm Dis. 1993 Sep-Oct;20(5):286–289. doi: 10.1097/00007435-199309000-00009. [DOI] [PubMed] [Google Scholar]
  45. Xi L. F., Demers G. W., Koutsky L. A., Kiviat N. B., Kuypers J., Watts D. H., Holmes K. K., Galloway D. A. Analysis of human papillomavirus type 16 variants indicates establishment of persistent infection. J Infect Dis. 1995 Sep;172(3):747–755. doi: 10.1093/infdis/172.3.747. [DOI] [PubMed] [Google Scholar]
  46. Yamada T., Wheeler C. M., Halpern A. L., Stewart A. C., Hildesheim A., Jenison S. A. Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6, L2, and L1 coding segments. J Virol. 1995 Dec;69(12):7743–7753. doi: 10.1128/jvi.69.12.7743-7753.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. de Villiers E. M. Human pathogenic papillomavirus types: an update. Curr Top Microbiol Immunol. 1994;186:1–12. doi: 10.1007/978-3-642-78487-3_1. [DOI] [PubMed] [Google Scholar]
  48. ter Meulen J., Schweigler A. C., Eberhardt H. C., Luande J., Mgaya H. N., Müller M., Bleul C., Ulken V., Ikenberg H., Pawlita M. Sequence variation in the E7 gene of human papillomavirus type 18 in tumor and non-tumor patients and antibody response to a conserved seroreactive epitope. Int J Cancer. 1993 Jan 21;53(2):257–259. doi: 10.1002/ijc.2910530214. [DOI] [PubMed] [Google Scholar]
  49. van Belkum A., Juffermans L., Schrauwen L., van Doornum G., Burger M., Quint W. Genotyping human papillomavirus type 16 isolates from persistently infected promiscuous individuals and cervical neoplasia patients. J Clin Microbiol. 1995 Nov;33(11):2957–2962. doi: 10.1128/jcm.33.11.2957-2962.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. van Belkum A. Low-stringency single specific primer PCR, DNA sequencing and single-strand conformation polymorphism of PCR products for identification of genetic variants of human papillomavirus type 16. J Virol Methods. 1995 Nov;55(3):435–443. doi: 10.1016/0166-0934(95)00096-6. [DOI] [PubMed] [Google Scholar]
  51. van den Brule A. J., Claas E. C., du Maine M., Melchers W. J., Helmerhorst T., Quint W. G., Lindeman J., Meijer C. J., Walboomers J. M. Use of anticontamination primers in the polymerase chain reaction for the detection of human papilloma virus genotypes in cervical scrapes and biopsies. J Med Virol. 1989 Sep;29(1):20–27. doi: 10.1002/jmv.1890290105. [DOI] [PubMed] [Google Scholar]
  52. van den Brule A. J., Meijer C. J., Bakels V., Kenemans P., Walboomers J. M. Rapid detection of human papillomavirus in cervical scrapes by combined general primer-mediated and type-specific polymerase chain reaction. J Clin Microbiol. 1990 Dec;28(12):2739–2743. doi: 10.1128/jcm.28.12.2739-2743.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES