Abstract
Bovine tuberculosis (TB) caused by Mycobacterium bovis is an important veterinary disease that can also afflict humans. Although M. bovis shares an almost identical genome with M. tuberculosis, subtle differences in host specificity and several biochemical parameters can be used to distinguish the two closely related species. The current method for distinguishing M. bovis from M. tuberculosis relies on tedious testing of biochemical parameters, including natural resistance to pyrazinamide and defective pyrazinamidase (PZase) activity of M. bovis strains. In this study, we report the development of a rapid PCR-single-strand conformation polymorphism (SSCP) assay to differentiate M. bovis from M. tuberculosis strains, based on the detection of a single characteristic point mutation in the PZase gene (pncA) of M. bovis. Eighty-seven of 89 M. bovis strains could be distinguished from M. tuberculosis strains. Surprisingly, two animal isolates which were initially identified as M. bovis were shown to be M. africanum because they had a wild-type pncA sequence with positive PZase. These two M. africanum strains contain multiple (three and six) copies of insertion sequence IS6110, a feature they have in common with M. tuberculosis. The implication of this finding for the taxonomy of M. tuberculosis complex is discussed in relation to host preference and epidemiology. The development of a rapid PCR-SSCP test for distinguishing M. bovis from M. tuberculosis will be useful for monitoring the spread of bovine TB to humans in areas where bovine TB is endemic and for directing the treatment of human TB caused by M. bovis.
Full Text
The Full Text of this article is available as a PDF (762.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfredsen S., Saxegaard F. An outbreak of tuberculosis in pigs and cattle caused by Mycobacterium africanum. Vet Rec. 1992 Jul 18;131(3):51–53. doi: 10.1136/vr.131.3.51. [DOI] [PubMed] [Google Scholar]
- Baess I. Deoxyribonucleic acid relatedness among species of slowly-growing mycobacteria. Acta Pathol Microbiol Scand B. 1979 Aug;87(4):221–226. doi: 10.1111/j.1699-0463.1979.tb02430.x. [DOI] [PubMed] [Google Scholar]
- Collins D. M., Erasmuson S. K., Stephens D. M., Yates G. F., De Lisle G. W. DNA fingerprinting of Mycobacterium bovis strains by restriction fragment analysis and hybridization with insertion elements IS1081 and IS6110. J Clin Microbiol. 1993 May;31(5):1143–1147. doi: 10.1128/jcm.31.5.1143-1147.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daborn C. J., Grange J. M. HIV/AIDS and its implications for the control of animal tuberculosis. Br Vet J. 1993 Sep-Oct;149(5):405–417. doi: 10.1016/S0007-1935(05)80107-1. [DOI] [PubMed] [Google Scholar]
- Dankner W. M., Waecker N. J., Essey M. A., Moser K., Thompson M., Davis C. E. Mycobacterium bovis infections in San Diego: a clinicoepidemiologic study of 73 patients and a historical review of a forgotten pathogen. Medicine (Baltimore) 1993 Jan;72(1):11–37. [PubMed] [Google Scholar]
- Eisenach K. D., Crawford J. T., Bates J. H. Repetitive DNA sequences as probes for Mycobacterium tuberculosis. J Clin Microbiol. 1988 Nov;26(11):2240–2245. doi: 10.1128/jcm.26.11.2240-2245.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harboe M., Nagai S. MPB70, a unique antigen of Mycobacterium bovis BCG. Am Rev Respir Dis. 1984 Mar;129(3):444–452. doi: 10.1164/arrd.1984.129.3.444. [DOI] [PubMed] [Google Scholar]
- Hoffner S. E., Svenson S. B., Norberg R., Dias F., Ghebremichael S., Källenius G. Biochemical heterogeneity of Mycobacterium tuberculosis complex isolates in Guinea-Bissau. J Clin Microbiol. 1993 Aug;31(8):2215–2217. doi: 10.1128/jcm.31.8.2215-2217.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konno K., Feldmann F. M., McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis. 1967 Mar;95(3):461–469. doi: 10.1164/arrd.1967.95.3.461. [DOI] [PubMed] [Google Scholar]
- Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
- Rodriguez J. G., Mejia G. A., Del Portillo P., Patarroyo M. E., Murillo L. A. Species-specific identification of Mycobacterium bovis by PCR. Microbiology. 1995 Sep;141(Pt 9):2131–2138. doi: 10.1099/13500872-141-9-2131. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996 Jun;2(6):662–667. doi: 10.1038/nm0696-662. [DOI] [PubMed] [Google Scholar]
- Sheffield V. C., Beck J. S., Kwitek A. E., Sandstrom D. W., Stone E. M. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics. 1993 May;16(2):325–332. doi: 10.1006/geno.1993.1193. [DOI] [PubMed] [Google Scholar]
- Sreevatsan S., Escalante P., Pan X., Gillies D. A., 2nd, Siddiqui S., Khalaf C. N., Kreiswirth B. N., Bifani P., Adams L. G., Ficht T. Identification of a polymorphic nucleotide in oxyR specific for Mycobacterium bovis. J Clin Microbiol. 1996 Aug;34(8):2007–2010. doi: 10.1128/jcm.34.8.2007-2010.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wayne L. G. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis. 1974 Jan;109(1):147–151. doi: 10.1164/arrd.1974.109.1.147. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Garcia M. J., Lathigra R., Allen B., Moreno C., van Embden J. D., Young D. Alterations in the superoxide dismutase gene of an isoniazid-resistant strain of Mycobacterium tuberculosis. Infect Immun. 1992 Jun;60(6):2160–2165. doi: 10.1128/iai.60.6.2160-2165.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Soolingen D., Hermans P. W., de Haas P. E., Soll D. R., van Embden J. D. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol. 1991 Nov;29(11):2578–2586. doi: 10.1128/jcm.29.11.2578-2586.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Soolingen D., de Haas P. E., Haagsma J., Eger T., Hermans P. W., Ritacco V., Alito A., van Embden J. D. Use of various genetic markers in differentiation of Mycobacterium bovis strains from animals and humans and for studying epidemiology of bovine tuberculosis. J Clin Microbiol. 1994 Oct;32(10):2425–2433. doi: 10.1128/jcm.32.10.2425-2433.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Soolingen D., de Haas P. E., Hermans P. W., Groenen P. M., van Embden J. D. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol. 1993 Aug;31(8):1987–1995. doi: 10.1128/jcm.31.8.1987-1995.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]