Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Feb;35(2):350–353. doi: 10.1128/jcm.35.2.350-353.1997

Identification and classification of Oxalobacter formigenes strains by using oligonucleotide probes and primers.

H Sidhu 1, M Allison 1, A B Peck 1
PMCID: PMC229578  PMID: 9003594

Abstract

Genomic DNAs of various strains of Oxalobacter formigenes were subjected to restriction endonuclease fragment length polymorphism- and PCR-based amplification analyses with DNA probes and primers complementary to sequences within either the oxc gene, encoding oxalyl coenzyme A (oxalyl-CoA) decarboxylase, or the frc gene, encoding formyl-CoA transferase. Oligonucleotide probes based on nonconserved sequences of oxc or frc were able to divide O. formigenes strains into at least two groups, consistent with the current separation of O. formigenes strains into groups I and II on the basis of 16S rRNA sequence similarities and lipid content. In contrast, an oligonucleotide probe based on the conserved 5' end of oxc appeared to bind all group I and the majority of group II strains. PCR amplification of the oxc gene showed even greater sensitivity in detecting O. formigenes and provided support for further division of the strains into subgroups. In addition, these oligonucleotides failed to hybridize to or amplify PCR products from whole fecal DNA isolated from fresh stool samples from an individual not colonized with O. formigenes, indicating unique specificity. Thus, these DNA analyses permit both detection as well as classification of O. formigenes strains.

Full Text

The Full Text of this article is available as a PDF (319.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison M. J., Cook H. M., Milne D. B., Gallagher S., Clayman R. V. Oxalate degradation by gastrointestinal bacteria from humans. J Nutr. 1986 Mar;116(3):455–460. doi: 10.1093/jn/116.3.455. [DOI] [PubMed] [Google Scholar]
  2. Allison M. J., Dawson K. A., Mayberry W. R., Foss J. G. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985 Feb;141(1):1–7. doi: 10.1007/BF00446731. [DOI] [PubMed] [Google Scholar]
  3. Anderson J. T., Cornelius J. G., Jarpe A. J., Winter W. E., Peck A. B. Insulin-dependent diabetes in the NOD mouse model. II. Beta cell destruction in autoimmune diabetes is a TH2 and not a TH1 mediated event. Autoimmunity. 1993;15(2):113–122. doi: 10.3109/08916939309043886. [DOI] [PubMed] [Google Scholar]
  4. Argenzio R. A., Liacos J. A., Allison M. J. Intestinal oxalate-degrading bacteria reduce oxalate absorption and toxicity in guinea pigs. J Nutr. 1988 Jun;118(6):787–792. doi: 10.1093/jn/118.6.787. [DOI] [PubMed] [Google Scholar]
  5. Daniel S. L., Hartman P. A., Allison M. J. Microbial degradation of oxalate in the gastrointestinal tracts of rats. Appl Environ Microbiol. 1987 Aug;53(8):1793–1797. doi: 10.1128/aem.53.8.1793-1797.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dawson K. A., Allison M. J., Hartman P. A. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol. 1980 Oct;40(4):833–839. doi: 10.1128/aem.40.4.833-839.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ELDER T. D., WYNGAARDEN J. B. The biosynthesis and turnover of oxalate in normal and hyperoxaluric subjects. J Clin Invest. 1960 Aug;39:1337–1344. doi: 10.1172/JCI104151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koopman M. B., Käsbohrer A., Beckmann G., van der Zeijst B. A., Kusters J. G. Genetic similarity of intestinal spirochetes from humans and various animal species. J Clin Microbiol. 1993 Mar;31(3):711–716. doi: 10.1128/jcm.31.3.711-716.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lung H. Y., Baetz A. L., Peck A. B. Molecular cloning, DNA sequence, and gene expression of the oxalyl-coenzyme A decarboxylase gene, oxc, from the bacterium Oxalobacter formigenes. J Bacteriol. 1994 Apr;176(8):2468–2472. doi: 10.1128/jb.176.8.2468-2472.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. QUAYLE J. R. CARBON ASSIMILATION BY PSEUDOMONAS OXALATICUS (OX1). 7. DECARBOXYLATION OF OXALYL-COENZYME A TO FORMYL-COENZYME A. Biochem J. 1963 Dec;89:492–503. doi: 10.1042/bj0890492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rodby R. A., Tyszka T. S., Williams J. W. Reversal of cardiac dysfunction secondary to type 1 primary hyperoxaluria after combined liver-kidney transplantation. Am J Med. 1991 Apr;90(4):498–504. [PubMed] [Google Scholar]
  12. Stacy-Phipps S., Mecca J. J., Weiss J. B. Multiplex PCR assay and simple preparation method for stool specimens detect enterotoxigenic Escherichia coli DNA during course of infection. J Clin Microbiol. 1995 May;33(5):1054–1059. doi: 10.1128/jcm.33.5.1054-1059.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tenover F. C. Diagnostic deoxyribonucleic acid probes for infectious diseases. Clin Microbiol Rev. 1988 Jan;1(1):82–101. doi: 10.1128/cmr.1.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES