Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Feb;35(2):412–417. doi: 10.1128/jcm.35.2.412-417.1997

Genetic and phenotypic characterization of intestinal spirochetes colonizing chickens and allocation of known pathogenic isolates to three distinct genetic groups.

A J McLaren 1, D J Trott 1, D E Swayne 1, S L Oxberry 1, D J Hampson 1
PMCID: PMC229591  PMID: 9003607

Abstract

Infection with intestinal spirochetes has recently been recognized as a cause of lost production in the poultry industry. Little is known about these organisms, so a collection of 56 isolates originating from chickens in commercial flocks in Australia, the United States, The Netherlands, and the United Kingdom was examined. Strength of beta-hemolysis on blood agar, indole production, API ZYM enzyme profiles, and cellular morphology were determined, and multilocus enzyme electrophoresis was used to analyze the extent of genetic diversity among the isolates. The results were compared with those previously obtained for well-characterized porcine intestinal spirochetes. The chicken isolates were genetically heterogeneous. They were divided into 40 electrophoretic types distributed among six diverse genetic groups (groups b to g), with a mean genetic diversity of 0.587. Strains in two groups (groups d and e) may represent new species of Serpulina, and the groups contained only strains isolated from chickens. Three genetic groups contained isolates previously shown to be pathogenic for chickens. These corresponded to the proposed species "Serpulina intermedius," to an unnamed group (group e), and to Serpulina pilosicoli. Two of the chicken isolates (one "S. intermedius" and one S. pilosicoli isolate) were strongly beta-hemolytic, two (both "S. intermedius") had an intermediate level of beta-hemolysis, and the rest were weakly beta-hemolytic. Fourteen isolates of "S. intermedius" produced indole, as did one isolate from group d. Isolates identified as S. pilosicoli resembled porcine isolates of this species, having four to six periplasmic flagella inserted subterminally in a single row at each end of the cell, and had tapered cell ends. All other spirochetes were morphologically similar, having seven or more periplasmic flagella and blunt cell ends. The identification of three genetic groups containing pathogenic isolates provides an opportunity for more detailed epidemiologic studies with these pathogens and for the development of improved diagnostic tests.

Full Text

The Full Text of this article is available as a PDF (194.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atyeo R. F., Oxberry S. L., Hampson D. J. Pulsed-field gel electrophoresis for sub-specific differentiation of Serpulina pilosicoli (formerly 'Anguillina coli'). FEMS Microbiol Lett. 1996 Jul 15;141(1):77–81. doi: 10.1111/j.1574-6968.1996.tb08366.x. [DOI] [PubMed] [Google Scholar]
  2. Dwars R. M., Smit H. F., Davelaar F. G. Observations on avian intestinal spirochaetosis. Vet Q. 1990 Jan;12(1):51–55. doi: 10.1080/01652176.1990.9694242. [DOI] [PubMed] [Google Scholar]
  3. Fellström C., Gunnarsson A. Phenotypical characterisation of intestinal spirochaetes isolated from pigs. Res Vet Sci. 1995 Jul;59(1):1–4. doi: 10.1016/0034-5288(95)90021-7. [DOI] [PubMed] [Google Scholar]
  4. Griffiths I. B., Hunt B. W., Lister S. A., Lamont M. H. Retarded growth rate and delayed onset of egg production associated with spirochaete infection in pullets. Vet Rec. 1987 Jul 11;121(2):35–37. doi: 10.1136/vr.121.2.35. [DOI] [PubMed] [Google Scholar]
  5. Hunter D., Wood T. An evaluation of the API ZYM system as a means of classifying spirochaetes associated with swine dysentery. Vet Rec. 1979 Apr 28;104(17):383–384. doi: 10.1136/vr.104.17.383. [DOI] [PubMed] [Google Scholar]
  6. Kunkle R. A., Harris D. L., Kinyon J. M. Autoclaved liquid medium for propagation of Treponema hyodysenteriae. J Clin Microbiol. 1986 Oct;24(4):669–671. doi: 10.1128/jcm.24.4.669-671.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lee J. I., Hampson D. J. Genetic characterisation of intestinal spirochaetes and their association with disease. J Med Microbiol. 1994 May;40(5):365–371. doi: 10.1099/00222615-40-5-365. [DOI] [PubMed] [Google Scholar]
  8. Lee J. I., Hampson D. J., Lymbery A. J., Harders S. J. The porcine intestinal spirochaetes: identification of new genetic groups. Vet Microbiol. 1993 Mar;34(3):273–285. doi: 10.1016/0378-1135(93)90017-2. [DOI] [PubMed] [Google Scholar]
  9. Lymbery A. J., Hampson D. J., Hopkins R. M., Combs B., Mhoma J. R. Multilocus enzyme electrophoresis for identification and typing of Treponema hyodysenteriae and related spirochaetes. Vet Microbiol. 1990 Mar;22(1):89–99. doi: 10.1016/0378-1135(90)90127-h. [DOI] [PubMed] [Google Scholar]
  10. MATHEY W. J., Jr, ZANDER D. V. Spirochetes and cecal nodules in poultry. J Am Vet Med Assoc. 1955 Jun;126(939):475–477. [PubMed] [Google Scholar]
  11. Park N. Y., Chung C. Y., McLaren A. J., Atyeo R. F., Hampson D. J. Polymerase chain reaction for identification of human and porcine spirochaetes recovered from cases of intestinal spirochaetosis. FEMS Microbiol Lett. 1995 Jan 15;125(2-3):225–229. doi: 10.1111/j.1574-6968.1995.tb07362.x. [DOI] [PubMed] [Google Scholar]
  12. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986 May;51(5):873–884. doi: 10.1128/aem.51.5.873-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stanton T. B. Proposal to change the genus designation Serpula to Serpulina gen. nov. containing the species Serpulina hyodysenteriae comb. nov. and Serpulina innocens comb. nov. Int J Syst Bacteriol. 1992 Jan;42(1):189–190. doi: 10.1099/00207713-42-1-189. [DOI] [PubMed] [Google Scholar]
  14. Stanton T. B., Trott D. J., Lee J. I., McLaren A. J., Hampson D. J., Paster B. J., Jensen N. S. Differentiation of intestinal spirochaetes by multilocus enzyme electrophoresis analysis and 16S rRNA sequence comparisons. FEMS Microbiol Lett. 1996 Feb 15;136(2):181–186. doi: 10.1111/j.1574-6968.1996.tb08046.x. [DOI] [PubMed] [Google Scholar]
  15. Swayne D. E., Bermudez A. J., Sagartz J. E., Eaton K. A., Monfort J. D., Stoutenburg J. W., Hayes J. R. Association of cecal spirochetes with pasty vents and dirty eggshells in layers. Avian Dis. 1992 Jul-Sep;36(3):776–781. [PubMed] [Google Scholar]
  16. Swayne D. E., Eaton K. A., Stoutenburg J., Trott D. J., Hampson D. J., Jensen N. S. Identification of a new intestinal spirochete with pathogenicity for chickens. Infect Immun. 1995 Feb;63(2):430–436. doi: 10.1128/iai.63.2.430-436.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Trampel D. W., Jensen N. S., Hoffman L. J. Cecal spirochetosis in commercial laying hens. Avian Dis. 1994 Oct-Dec;38(4):895–898. [PubMed] [Google Scholar]
  18. Trott D. J., McLaren A. J., Hampson D. J. Pathogenicity of human and porcine intestinal spirochetes in one-day-old specific-pathogen-free chicks: an animal model of intestinal spirochetosis. Infect Immun. 1995 Sep;63(9):3705–3710. doi: 10.1128/iai.63.9.3705-3710.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trott D. J., Stanton T. B., Jensen N. S., Duhamel G. E., Johnson J. L., Hampson D. J. Serpulina pilosicoli sp. nov., the agent of porcine intestinal spirochetosis. Int J Syst Bacteriol. 1996 Jan;46(1):206–215. doi: 10.1099/00207713-46-1-206. [DOI] [PubMed] [Google Scholar]
  20. Trott D. J., Stanton T. B., Jensen N. S., Hampson D. J. Phenotypic characteristics of Serpulina pilosicoli the agent of intestinal spirochaetosis. FEMS Microbiol Lett. 1996 Sep 1;142(2-3):209–214. doi: 10.1111/j.1574-6968.1996.tb08432.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES