Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Mar;35(3):685–690. doi: 10.1128/jcm.35.3.685-690.1997

An optimized PCR leads to rapid and highly sensitive detection of Borrelia burgdorferi in patients with Lyme borreliosis.

S Priem 1, M G Rittig 1, T Kamradt 1, G R Burmester 1, A Krause 1
PMCID: PMC229651  PMID: 9041413

Abstract

The present study aimed at developing an optimized PCR protocol fro the sensitive and specific detection of all three Borrelia burgdorferi genospecies pathogenic to humans in Lyme borreliosis patients. A rapid DNA extraction method using alkaline lysis was introduced and was found to be superior to other DNA extraction methods. Nested PCR was performed with primer sets targeting the plasmid-located ospA gene and a chromosomal gene segment encoding a 66-kDa protein (p66). In spiked synovial fluid (SF) fewer than three borreliae/sample were detected. The specificities of the amplicons were confirmed by Southern blot analysis with PCR-derived probes. Urine, cerebrospinal fluid (CSF), and SF specimens from 57 patients with Lyme borreliosis and from 58 controls were examined. In clinical samples the diagnostic sensitivity of PCR was 85% with SF samples, 79% with urine samples, and 91% with paired SF-urine samples from patients with Lyme arthritis and was 79% with CSF samples, 45% with urine samples, and 87% with paired CSF-urine specimens from neuroborreliosis patients. One patient each with neuroborreliosis and with Lyme arthritis had PCR-positive urine samples only. In 17% of all cases both primer sets yielded positive results, while the other patients were positive with only one primer set. Among these, more positive results were obtained with the p66 gene primer than with the ospA primer. The specificity exceeded 99%. We conclude that DNA from B. burgdorferi sensu lato species can sensitively and specifically be detected with the optimized PCR method described. At least two different primer sets should be used, and whenever possible, urine and CSF or SF should be analyzed in parallel to achieve maximum sensitivity of the test. This protocol, therefore, considerably enhances the diagnostic power of PCR in patients with B. burgdorferi infection.

Full Text

The Full Text of this article is available as a PDF (89.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthonissen F. M., De Kesel M., Hoet P. P., Bigaignon G. H. Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res Microbiol. 1994 May;145(4):327–331. doi: 10.1016/0923-2508(94)90187-2. [DOI] [PubMed] [Google Scholar]
  2. Asch E. S., Bujak D. I., Weiss M., Peterson M. G., Weinstein A. Lyme disease: an infectious and postinfectious syndrome. J Rheumatol. 1994 Mar;21(3):454–461. [PubMed] [Google Scholar]
  3. Baranton G., Postic D., Saint Girons I., Boerlin P., Piffaretti J. C., Assous M., Grimont P. A. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992 Jul;42(3):378–383. doi: 10.1099/00207713-42-3-378. [DOI] [PubMed] [Google Scholar]
  4. Barbour A. G., Fish D. The biological and social phenomenon of Lyme disease. Science. 1993 Jun 11;260(5114):1610–1616. doi: 10.1126/science.8503006. [DOI] [PubMed] [Google Scholar]
  5. Demaerschalck I., Ben Messaoud A., De Kesel M., Hoyois B., Lobet Y., Hoet P., Bigaignon G., Bollen A., Godfroid E. Simultaneous presence of different Borrelia burgdorferi genospecies in biological fluids of Lyme disease patients. J Clin Microbiol. 1995 Mar;33(3):602–608. doi: 10.1128/jcm.33.3.602-608.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engstrom S. M., Shoop E., Johnson R. C. Immunoblot interpretation criteria for serodiagnosis of early Lyme disease. J Clin Microbiol. 1995 Feb;33(2):419–427. doi: 10.1128/jcm.33.2.419-427.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finckh U., Lingenfelter P. A., Myerson D. Producing single-stranded DNA probes with the Taq DNA polymerase: a high yield protocol. Biotechniques. 1991 Jan;10(1):35-6, 38-9. [PubMed] [Google Scholar]
  8. Goodman J. L., Bradley J. F., Ross A. E., Goellner P., Lagus A., Vitale B., Berger B. W., Luger S., Johnson R. C. Bloodstream invasion in early Lyme disease: results from a prospective, controlled, blinded study using the polymerase chain reaction. Am J Med. 1995 Jul;99(1):6–12. doi: 10.1016/s0002-9343(99)80097-7. [DOI] [PubMed] [Google Scholar]
  9. Goodman J. L., Jurkovich P., Kramber J. M., Johnson R. C. Molecular detection of persistent Borrelia burgdorferi in the urine of patients with active Lyme disease. Infect Immun. 1991 Jan;59(1):269–278. doi: 10.1128/iai.59.1.269-278.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guy E. C., Stanek G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J Clin Pathol. 1991 Jul;44(7):610–611. doi: 10.1136/jcp.44.7.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jaulhac B., Chary-Valckenaere I., Sibilia J., Javier R. M., Piémont Y., Kuntz J. L., Monteil H., Pourel J. Detection of Borrelia burgdorferi by DNA amplification in synovial tissue samples from patients with Lyme arthritis. Arthritis Rheum. 1996 May;39(5):736–745. doi: 10.1002/art.1780390505. [DOI] [PubMed] [Google Scholar]
  12. Jiwa N. M., Van Gemert G. W., Raap A. K., Van de Rijke F. M., Mulder A., Lens P. F., Salimans M. M., Zwaan F. E., Van Dorp W., Van der Ploeg M. Rapid detection of human cytomegalovirus DNA in peripheral blood leukocytes of viremic transplant recipients by the polymerase chain reaction. Transplantation. 1989 Jul;48(1):72–76. doi: 10.1097/00007890-198907000-00017. [DOI] [PubMed] [Google Scholar]
  13. Kalish R. Lyme disease. Rheum Dis Clin North Am. 1993 May;19(2):399–426. [PubMed] [Google Scholar]
  14. Keller T. L., Halperin J. J., Whitman M. PCR detection of Borrelia burgdorferi DNA in cerebrospinal fluid of Lyme neuroborreliosis patients. Neurology. 1992 Jan;42(1):32–42. doi: 10.1212/wnl.42.1.32. [DOI] [PubMed] [Google Scholar]
  15. Krause A., Brade V., Schoerner C., Solbach W., Kalden J. R., Burmester G. R. T cell proliferation induced by Borrelia burgdorferi in patients with Lyme borreliosis. Autologous serum required for optimum stimulation. Arthritis Rheum. 1991 Apr;34(4):393–402. doi: 10.1002/art.1780340404. [DOI] [PubMed] [Google Scholar]
  16. Krause A., Burmester G. R., Rensing A., Schoerner C., Schaible U. E., Simon M. M., Herzer P., Kramer M. D., Wallich R. Cellular immune reactivity to recombinant OspA and flagellin from Borrelia burgdorferi in patients with Lyme borreliosis. Complexity of humoral and cellular immune responses. J Clin Invest. 1992 Sep;90(3):1077–1084. doi: 10.1172/JCI115923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lebech A. M., Hansen K. Detection of Borrelia burgdorferi DNA in urine samples and cerebrospinal fluid samples from patients with early and late Lyme neuroborreliosis by polymerase chain reaction. J Clin Microbiol. 1992 Jul;30(7):1646–1653. doi: 10.1128/jcm.30.7.1646-1653.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liebling M. R., Nishio M. J., Rodriguez A., Sigal L. H., Jin T., Louie J. S. The polymerase chain reaction for the detection of Borrelia burgdorferi in human body fluids. Arthritis Rheum. 1993 May;36(5):665–675. doi: 10.1002/art.1780360514. [DOI] [PubMed] [Google Scholar]
  19. Maiwald M., Stockinger C., Hassler D., von Knebel Doeberitz M., Sonntag H. G. Evaluation of the detection of Borrelia burgdorferi DNA in urine samples by polymerase chain reaction. Infection. 1995 May-Jun;23(3):173–179. doi: 10.1007/BF01793860. [DOI] [PubMed] [Google Scholar]
  20. Marconi R. T., Garon C. F. Development of polymerase chain reaction primer sets for diagnosis of Lyme disease and for species-specific identification of Lyme disease isolates by 16S rRNA signature nucleotide analysis. J Clin Microbiol. 1992 Nov;30(11):2830–2834. doi: 10.1128/jcm.30.11.2830-2834.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moter S. E., Hofmann H., Wallich R., Simon M. M., Kramer M. D. Detection of Borrelia burgdorferi sensu lato in lesional skin of patients with erythema migrans and acrodermatitis chronica atrophicans by ospA-specific PCR. J Clin Microbiol. 1994 Dec;32(12):2980–2988. doi: 10.1128/jcm.32.12.2980-2988.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nadelman R. B., Schwartz I., Wormser G. P. Detecting Borrelia burgdorferi in blood from patients with Lyme disease. J Infect Dis. 1994 Jun;169(6):1410–1411. doi: 10.1093/infdis/169.6.1410. [DOI] [PubMed] [Google Scholar]
  23. Nocton J. J., Dressler F., Rutledge B. J., Rys P. N., Persing D. H., Steere A. C. Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. N Engl J Med. 1994 Jan 27;330(4):229–234. doi: 10.1056/NEJM199401273300401. [DOI] [PubMed] [Google Scholar]
  24. Persing D. H., Rutledge B. J., Rys P. N., Podzorski D. S., Mitchell P. D., Reed K. D., Liu B., Fikrig E., Malawista S. E. Target imbalance: disparity of Borrelia burgdorferi genetic material in synovial fluid from Lyme arthritis patients. J Infect Dis. 1994 Mar;169(3):668–672. doi: 10.1093/infdis/169.3.668. [DOI] [PubMed] [Google Scholar]
  25. Pfister H. W., Wilske B., Weber K. Lyme borreliosis: basic science and clinical aspects. Lancet. 1994 Apr 23;343(8904):1013–1016. doi: 10.1016/s0140-6736(94)90130-9. [DOI] [PubMed] [Google Scholar]
  26. Probert W. S., Allsup K. M., LeFebvre R. B. Identification and characterization of a surface-exposed, 66-kilodalton protein from Borrelia burgdorferi. Infect Immun. 1995 May;63(5):1933–1939. doi: 10.1128/iai.63.5.1933-1939.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rosa P. A., Schwan T. G. A specific and sensitive assay for the Lyme disease spirochete Borrelia burgdorferi using the polymerase chain reaction. J Infect Dis. 1989 Dec;160(6):1018–1029. doi: 10.1093/infdis/160.6.1018. [DOI] [PubMed] [Google Scholar]
  28. Samuels D. S., Marconi R. T., Garon C. F. Variation in the size of the ospA-containing linear plasmid, but not the linear chromosome, among the three Borrelia species associated with Lyme disease. J Gen Microbiol. 1993 Oct;139(10):2445–2449. doi: 10.1099/00221287-139-10-2445. [DOI] [PubMed] [Google Scholar]
  29. Schwartz I., Wormser G. P., Schwartz J. J., Cooper D., Weissensee P., Gazumyan A., Zimmermann E., Goldberg N. S., Bittker S., Campbell G. L. Diagnosis of early Lyme disease by polymerase chain reaction amplification and culture of skin biopsies from erythema migrans lesions. J Clin Microbiol. 1992 Dec;30(12):3082–3088. doi: 10.1128/jcm.30.12.3082-3088.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steere A. C. Lyme disease. N Engl J Med. 1989 Aug 31;321(9):586–596. doi: 10.1056/NEJM198908313210906. [DOI] [PubMed] [Google Scholar]
  31. Wallich R., Helmes C., Schaible U. E., Lobet Y., Moter S. E., Kramer M. D., Simon M. M. Evaluation of genetic divergence among Borrelia burgdorferi isolates by use of OspA, fla, HSP60, and HSP70 gene probes. Infect Immun. 1992 Nov;60(11):4856–4866. doi: 10.1128/iai.60.11.4856-4866.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wallich R., Moter S. E., Simon M. M., Ebnet K., Heiberger A., Kramer M. D. The Borrelia burgdorferi flagellum-associated 41-kilodalton antigen (flagellin): molecular cloning, expression, and amplification of the gene. Infect Immun. 1990 Jun;58(6):1711–1719. doi: 10.1128/iai.58.6.1711-1719.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wienecke R., Zöchling N., Neubert U., Schlüpen E. M., Meurer M., Volkenandt M. Molecular subtyping of Borrelia burgdorferi in erythema migrans and acrodermatitis chronica atrophicans. J Invest Dermatol. 1994 Jul;103(1):19–22. doi: 10.1111/1523-1747.ep12388947. [DOI] [PubMed] [Google Scholar]
  34. Williams W. V., Callegari P., Freundlich B., Keenan G., Eldridge D., Shin H., Kreitman M., McCallus D., Weiner D. B. Molecular diagnosis of Borrelia burgdorferi infection (Lyme disease). DNA Cell Biol. 1992 Apr;11(3):207–213. doi: 10.1089/dna.1992.11.207. [DOI] [PubMed] [Google Scholar]
  35. Wilske B., Preac-Mursic V., Göbel U. B., Graf B., Jauris S., Soutschek E., Schwab E., Zumstein G. An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol. 1993 Feb;31(2):340–350. doi: 10.1128/jcm.31.2.340-350.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van Dam A. P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C., Kramer M. D., Dankert J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis. 1993 Oct;17(4):708–717. doi: 10.1093/clinids/17.4.708. [DOI] [PubMed] [Google Scholar]
  37. von Stedingk L. V., Olsson I., Hanson H. S., Asbrink E., Hovmark A. Polymerase chain reaction for detection of Borrelia burgdorferi DNA in skin lesions of early and late Lyme borreliosis. Eur J Clin Microbiol Infect Dis. 1995 Jan;14(1):1–5. doi: 10.1007/BF02112610. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES