Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Apr;35(4):886–891. doi: 10.1128/jcm.35.4.886-891.1997

A sensitive, type-specific, fluorogenic probe assay for detection of human papillomavirus DNA.

D C Swan 1, R A Tucker 1, B P Holloway 1, J P Icenogle 1
PMCID: PMC229696  PMID: 9157148

Abstract

A simple method for the detection of a number of human papillomavirus (HPV) genotypes associated with cervical cancer has been developed. The assay exploits the 5'-->3' exonucleolytic activity of Taq DNA polymerase to increase the signal from fluorescent dyes by releasing them from genotype-specific probes during PCR. The probes are oligonucleotides with a 5' reporter dye (6-carboxyfluorescein), a quencher dye (6-carboxy-tetramethyl-rhodamine), and a phosphate-blocked 3' end. In the intact probe, the proximity of the reporter and the quencher results in suppression of reporter fluorescence by Förster-type energy transfer (V. T. Förster. Ann. Phys. 2:55-75, 1948). If the probe is bound downstream of either primer during PCR, the 5'-->3' exonucleolytic activity of Taq polymerase degrades it, allowing the reporter to diffuse away from the quencher, which results in an increase in reporter fluorescence. The increased fluorescence is directly related to the amount of target DNA and can be detected with an automated fluorometer. Probes for the L1 region of the cervical-cancer-associated HPV types 16, 18, 31, 33, and 35 were synthesized and the assays were optimized. The most sensitive assay can detect as few as two copies of HPV DNA in human cervical specimens.

Full Text

The Full Text of this article is available as a PDF (498.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassler H. A., Flood S. J., Livak K. J., Marmaro J., Knorr R., Batt C. A. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl Environ Microbiol. 1995 Oct;61(10):3724–3728. doi: 10.1128/aem.61.10.3724-3728.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer H. M., Ting Y., Greer C. E., Chambers J. C., Tashiro C. J., Chimera J., Reingold A., Manos M. M. Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA. 1991 Jan 23;265(4):472–477. [PubMed] [Google Scholar]
  3. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  4. Cox J. T., Lorincz A. T., Schiffman M. H., Sherman M. E., Cullen A., Kurman R. J. Human papillomavirus testing by hybrid capture appears to be useful in triaging women with a cytologic diagnosis of atypical squamous cells of undetermined significance. Am J Obstet Gynecol. 1995 Mar;172(3):946–954. doi: 10.1016/0002-9378(95)90026-8. [DOI] [PubMed] [Google Scholar]
  5. Cuzick J., Szarewski A., Terry G., Ho L., Hanby A., Maddox P., Anderson M., Kocjan G., Steele S. T., Guillebaud J. Human papillomavirus testing in primary cervical screening. Lancet. 1995 Jun 17;345(8964):1533–1536. doi: 10.1016/s0140-6736(95)91086-7. [DOI] [PubMed] [Google Scholar]
  6. Gibbs A. C. Comparison of ViraPap, southern hybridization, and polymerase chain reaction methods for human papillomavirus identification in an epidemiological investigation of cervical cancer. J Clin Microbiol. 1995 Aug;33(8):2229–2229. doi: 10.1128/jcm.33.8.2229-2229.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guerrero E., Daniel R. W., Bosch F. X., Castellsagué X., Muñoz N., Gili M., Viladiu P., Navarro C., Zubiri M. L., Ascunce N. Comparison of ViraPap, Southern hybridization, and polymerase chain reaction methods for human papillomavirus identification in an epidemiological investigation of cervical cancer. J Clin Microbiol. 1992 Nov;30(11):2951–2959. doi: 10.1128/jcm.30.11.2951-2959.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jacobs M. V., de Roda Husman A. M., van den Brule A. J., Snijders P. J., Meijer C. J., Walboomers J. M. Group-specific differentiation between high- and low-risk human papillomavirus genotypes by general primer-mediated PCR and two cocktails of oligonucleotide probes. J Clin Microbiol. 1995 Apr;33(4):901–905. doi: 10.1128/jcm.33.4.901-905.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaufman R. H., Adam E., Icenogle J., Lawson H., Lee N., Reeves K. O., Irwin J., Simon T., Press M., Uhler R. Relevance of human papillomavirus screening in management of cervical intraepithelial neoplasia. Am J Obstet Gynecol. 1997 Jan;176(1 Pt 1):87–92. doi: 10.1016/s0002-9378(97)80017-8. [DOI] [PubMed] [Google Scholar]
  10. Kuypers J. M., Critchlow C. W., Gravitt P. E., Vernon D. A., Sayer J. B., Manos M. M., Kiviat N. B. Comparison of dot filter hybridization, Southern transfer hybridization, and polymerase chain reaction amplification for diagnosis of anal human papillomavirus infection. J Clin Microbiol. 1993 Apr;31(4):1003–1006. doi: 10.1128/jcm.31.4.1003-1006.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lampertico P., Malter J. S., Colombo M., Gerber M. A. Detection of hepatitis B virus DNA in formalin-fixed, paraffin-embedded liver tissue by the polymerase chain reaction. Am J Pathol. 1990 Aug;137(2):253–258. [PMC free article] [PubMed] [Google Scholar]
  12. Livak K. J., Flood S. J., Marmaro J., Giusti W., Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995 Jun;4(6):357–362. doi: 10.1101/gr.4.6.357. [DOI] [PubMed] [Google Scholar]
  13. Mansell M. E., Ho L., Terry G., Singer A., Cuzick J. Semi-quantitative human papillomavirus DNA detection in the management of women with minor cytological abnormality. Br J Obstet Gynaecol. 1994 Sep;101(9):807–809. doi: 10.1111/j.1471-0528.1994.tb11952.x. [DOI] [PubMed] [Google Scholar]
  14. Reddy L. V., Kumar A., Kurup V. P. Specific amplification of Aspergillus fumigatus DNA by polymerase chain reaction. Mol Cell Probes. 1993 Apr;7(2):121–126. doi: 10.1006/mcpr.1993.1016. [DOI] [PubMed] [Google Scholar]
  15. Resnick R. M., Cornelissen M. T., Wright D. K., Eichinger G. H., Fox H. S., ter Schegget J., Manos M. M. Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J Natl Cancer Inst. 1990 Sep 19;82(18):1477–1484. doi: 10.1093/jnci/82.18.1477. [DOI] [PubMed] [Google Scholar]
  16. Snijders P. J., Meijer C. J., Walboomers J. M. Degenerate primers based on highly conserved regions of amino acid sequence in papillomaviruses can be used in a generalized polymerase chain reaction to detect productive human papillomavirus infection. J Gen Virol. 1991 Nov;72(Pt 11):2781–2786. doi: 10.1099/0022-1317-72-11-2781. [DOI] [PubMed] [Google Scholar]
  17. Snijders P. J., van den Brule A. J., Schrijnemakers H. F., Snow G., Meijer C. J., Walboomers J. M. The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. J Gen Virol. 1990 Jan;71(Pt 1):173–181. doi: 10.1099/0022-1317-71-1-173. [DOI] [PubMed] [Google Scholar]
  18. Terry G., Ho L., Jenkins D., Hills M., Singer A., Mansell B., Beverley E. Definition of human papillomavirus type 16 DNA levels in low and high grade cervical lesions by a simple polymerase chain reaction technique. Arch Virol. 1993;128(1-2):123–133. doi: 10.1007/BF01309793. [DOI] [PubMed] [Google Scholar]
  19. Wiedbrauk D. L., Werner J. C., Drevon A. M. Inhibition of PCR by aqueous and vitreous fluids. J Clin Microbiol. 1995 Oct;33(10):2643–2646. doi: 10.1128/jcm.33.10.2643-2646.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van den Brule A. J., Snijders P. J., Gordijn R. L., Bleker O. P., Meijer C. J., Walboomers J. M. General primer-mediated polymerase chain reaction permits the detection of sequenced and still unsequenced human papillomavirus genotypes in cervical scrapes and carcinomas. Int J Cancer. 1990 Apr 15;45(4):644–649. doi: 10.1002/ijc.2910450412. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES