Abstract
A multiplex PCR test based on the simultaneous amplification of two lipoprotein genes, oprI and oprL, was designed and evaluated for its ability to directly detect fluorescent pseudomonads (amplification of oprI open reading frame, 249 bp) and Pseudomonas aeruginosa (amplification of oprL open reading frame, 504 bp) in clinical material. A collection of reference strains including 20 different species of fluorescent pseudomonads was tested. Positive PCR results for both genes were observed only for P. aeruginosa isolates (n = 150), including strains of clinical and environmental origin, while only one gene, oprI, was amplified from the other fluorescent pseudomonads. All other bacteria tested (n = 15) were negative by the amplification test. The lower detection level for P. aeruginosa was estimated to be 10(2) cells/ml. Preliminary evaluation on testing skin biopsy specimens from patients with burns (n = 14) and sputum samples from cystic fibrosis patients (n = 49) and other patients (n = 19) showed 100% sensitivity and 74% specificity in comparison with culture. This multiplex PCR assay appears promising for the rapid and sensitive detection of P. aeruginosa in clinical specimens. Further evaluation of its specificity in longitudinal clinical studies is warranted.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burdon D. W., Whitby J. L. Contamination of hospital disinfectants with Pseudomonas species. Br Med J. 1967 Apr 15;2(5545):153–155. doi: 10.1136/bmj.2.5545.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornelis P., Bouia A., Belarbi A., Guyonvarch A., Kammerer B., Hannaert V., Hubert J. C. Cloning and analysis of the gene for the major outer membrane lipoprotein from Pseudomonas aeruginosa. Mol Microbiol. 1989 Mar;3(3):421–428. doi: 10.1111/j.1365-2958.1989.tb00187.x. [DOI] [PubMed] [Google Scholar]
- De Vos D., Lim A., Jr, De Vos P., Sarniguet A., Kersters K., Cornelis P. Detection of the outer membrane lipoprotein I and its gene in fluorescent and non-fluorescent pseudomonads: implications for taxonomy and diagnosis. J Gen Microbiol. 1993 Sep;139(9):2215–2223. doi: 10.1099/00221287-139-9-2215. [DOI] [PubMed] [Google Scholar]
- Favero M. S., Carson L. A., Bond W. W., Petersen N. J. Pseudomonas aeruginosa: growth in distilled water from hospitals. Science. 1971 Aug 27;173(3999):836–838. doi: 10.1126/science.173.3999.836. [DOI] [PubMed] [Google Scholar]
- Grundmann H., Kropec A., Hartung D., Berner R., Daschner F. Pseudomonas aeruginosa in a neonatal intensive care unit: reservoirs and ecology of the nosocomial pathogen. J Infect Dis. 1993 Oct;168(4):943–947. doi: 10.1093/infdis/168.4.943. [DOI] [PubMed] [Google Scholar]
- Hancock R. E., Siehnel R., Martin N. Outer membrane proteins of Pseudomonas. Mol Microbiol. 1990 Jul;4(7):1069–1075. doi: 10.1111/j.1365-2958.1990.tb00680.x. [DOI] [PubMed] [Google Scholar]
- Høiby N. Antibiotic therapy for chronic infection of pseudomonas in the lung. Annu Rev Med. 1993;44:1–10. doi: 10.1146/annurev.me.44.020193.000245. [DOI] [PubMed] [Google Scholar]
- Koch C., Høiby N. Pathogenesis of cystic fibrosis. Lancet. 1993 Apr 24;341(8852):1065–1069. doi: 10.1016/0140-6736(93)92422-p. [DOI] [PubMed] [Google Scholar]
- Kolmos H. J., Thuesen B., Nielsen S. V., Lohmann M., Kristoffersen K., Rosdahl V. T. Outbreak of infection in a burns unit due to Pseudomonas aeruginosa originating from contaminated tubing used for irrigation of patients. J Hosp Infect. 1993 May;24(1):11–21. doi: 10.1016/0195-6701(93)90085-e. [DOI] [PubMed] [Google Scholar]
- Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
- Lee J. J., Marvin J. A., Heimbach D. M., Grube B. J., Engrav L. H. Infection control in a burn center. J Burn Care Rehabil. 1990 Nov-Dec;11(6):575–580. doi: 10.1097/00004630-199011000-00018. [DOI] [PubMed] [Google Scholar]
- Masuda N., Sakagawa E., Ohya S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995 Mar;39(3):645–649. doi: 10.1128/AAC.39.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh I., Govan J. R., Brock D. J. Detection of Pseudomonas aeruginosa in sputum from cystic fibrosis patients by the polymerase chain reaction. Mol Cell Probes. 1992 Aug;6(4):299–304. doi: 10.1016/0890-8508(92)90005-i. [DOI] [PubMed] [Google Scholar]
- McManus A. T., Mason A. D., Jr, McManus W. F., Pruitt B. A., Jr Twenty-five year review of Pseudomonas aeruginosa bacteremia in a burn center. Eur J Clin Microbiol. 1985 Apr;4(2):219–223. doi: 10.1007/BF02013601. [DOI] [PubMed] [Google Scholar]
- Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
- Noble R. C., Overman S. B. Pseudomonas stutzeri infection. A review of hospital isolates and a review of the literature. Diagn Microbiol Infect Dis. 1994 May;19(1):51–56. doi: 10.1016/0732-8893(94)90051-5. [DOI] [PubMed] [Google Scholar]
- Parrott P. L., Terry P. M., Whitworth E. N., Frawley L. W., Coble R. S., Wachsmuth I. K., McGowan J. E., Jr Pseudomonas aeruginosa peritonitis associated with contaminated poloxamer-iodine solution. Lancet. 1982 Sep 25;2(8300):683–685. doi: 10.1016/s0140-6736(82)90712-7. [DOI] [PubMed] [Google Scholar]
- Poh C. L., Yeo C. C. Recent advances in typing of Pseudomonas aeruginosa. J Hosp Infect. 1993 Jul;24(3):175–181. doi: 10.1016/0195-6701(93)90047-4. [DOI] [PubMed] [Google Scholar]
- Richard P., Le Floch R., Chamoux C., Pannier M., Espaze E., Richet H. Pseudomonas aeruginosa outbreak in a burn unit: role of antimicrobials in the emergence of multiply resistant strains. J Infect Dis. 1994 Aug;170(2):377–383. doi: 10.1093/infdis/170.2.377. [DOI] [PubMed] [Google Scholar]
- Rodríguez-Herva J. J., Ramos-Gonzalez M. I., Ramos J. L. The Pseudomonas putida peptidoglycan-associated outer membrane lipoprotein is involved in maintenance of the integrity of the cell cell envelope. J Bacteriol. 1996 Mar;178(6):1699–1706. doi: 10.1128/jb.178.6.1699-1706.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saint-Onge A., Romeyer F., Lebel P., Masson L., Brousseau R. Specificity of the Pseudomonas aeruginosa PAO1 lipoprotein I gene as a DNA probe and PCR target region within the Pseudomonadaceae. J Gen Microbiol. 1992 Apr;138(4):733–741. doi: 10.1099/00221287-138-4-733. [DOI] [PubMed] [Google Scholar]
- Taddonio T. E., Thomson P. D., Tait M. J., Prasad J. K., Feller I. Rapid quantification of bacterial and fungal growth in burn wounds: biopsy homogenate Gram stain versus microbial culture results. Burns Incl Therm Inj. 1988 Jun;14(3):180–184. doi: 10.1016/0305-4179(88)90035-6. [DOI] [PubMed] [Google Scholar]
- Taylor R. F., Hodson M. E., Pitt T. L. Adult cystic fibrosis: association of acute pulmonary exacerbations and increasing severity of lung disease with auxotrophic mutants of Pseudomonas aeruginosa. Thorax. 1993 Oct;48(10):1002–1005. doi: 10.1136/thx.48.10.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tredget E. E., Shankowsky H. A., Joffe A. M., Inkson T. I., Volpel K., Paranchych W., Kibsey P. C., Alton J. D., Burke J. F. Epidemiology of infections with Pseudomonas aeruginosa in burn patients: the role of hydrotherapy. Clin Infect Dis. 1992 Dec;15(6):941–949. doi: 10.1093/clind/15.6.941. [DOI] [PubMed] [Google Scholar]
- Valerius N. H., Koch C., Høiby N. Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet. 1991 Sep 21;338(8769):725–726. doi: 10.1016/0140-6736(91)91446-2. [DOI] [PubMed] [Google Scholar]