Abstract
We have adapted an assay for the direct detection of Mycobacterium tuberculosis using a prototype automated instrument platform in which probes are amplified with Q-beta replicase. The assay was based on amplification of specific detector probe following four cycles of background reduction (reversible target capture) in a closed disposable pack. The assay signal was the time required for fluorescence to exceed background levels (response time [RT]). RT was inversely related to the number of M. tuberculosis rRNA target molecules in the sample. Equivalent signals and noises were observed in assays containing either sputum or buffer. All mock samples containing > or = 10 CFU of M. tuberculosis responded in the assay (average RT, 13.91 min), while most (83%) samples containing as many as 10(7) CFU of Mycobacterium avium gave no response during a 25-min amplification reaction. The samples containing M. avium which did respond had an average RT of 17.04 min. Seventy-five percent (167 of 223) of samples containing no target gave no responses; the remaining 25% had an average RT of 15.53 min. Eighty-three frozen sputum samples were tested to develop a candidate cutoff RT for the assay prior to more extensive clinical testing. After resolution of discrepant results and with a 14-min RT cutoff, 30 of 38 M. tuberculosis-positive samples were positive by the assay; 1 of 45 negative samples responded within 14 min. Assay sensitivity, specificity, and positive and negatives predictive values in this pilot study were 79, 98, 97, and 85%, respectively.
Full Text
The Full Text of this article is available as a PDF (214.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- An Q., Buxton D., Hendricks A., Robinson L., Shah J., Lu L., Vera-Garcia M., King W., Olive D. M. Comparison of amplified Q beta replicase and PCR assays for detection of Mycobacterium tuberculosis. J Clin Microbiol. 1995 Apr;33(4):860–867. doi: 10.1128/jcm.33.4.860-867.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barns S. M., Lane D. J., Sogin M. L., Bibeau C., Weisburg W. G. Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol. 1991 Apr;173(7):2250–2255. doi: 10.1128/jb.173.7.2250-2255.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
- Burg J. L., Cahill P. B., Kutter M., Stefano J. E., Mahan D. E. Real-time fluorescence detection of RNA amplified by Q beta replicase. Anal Biochem. 1995 Sep 20;230(2):263–272. doi: 10.1006/abio.1995.1473. [DOI] [PubMed] [Google Scholar]
- Clarridge J. E., 3rd, Shawar R. M., Shinnick T. M., Plikaytis B. B. Large-scale use of polymerase chain reaction for detection of Mycobacterium tuberculosis in a routine mycobacteriology laboratory. J Clin Microbiol. 1993 Aug;31(8):2049–2056. doi: 10.1128/jcm.31.8.2049-2056.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cousins D. V., Wilton S. D., Francis B. R., Gow B. L. Use of polymerase chain reaction for rapid diagnosis of tuberculosis. J Clin Microbiol. 1992 Jan;30(1):255–258. doi: 10.1128/jcm.30.1.255-258.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Amato R. F., Wallman A. A., Hochstein L. H., Colaninno P. M., Scardamaglia M., Ardila E., Ghouri M., Kim K., Patel R. C., Miller A. Rapid diagnosis of pulmonary tuberculosis by using Roche AMPLICOR Mycobacterium tuberculosis PCR test. J Clin Microbiol. 1995 Jul;33(7):1832–1834. doi: 10.1128/jcm.33.7.1832-1834.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopewell P. C. Impact of human immunodeficiency virus infection on the epidemiology, clinical features, management, and control of tuberculosis. Clin Infect Dis. 1992 Sep;15(3):540–547. doi: 10.1093/clind/15.3.540. [DOI] [PubMed] [Google Scholar]
- Jonas V., Alden M. J., Curry J. I., Kamisango K., Knott C. A., Lankford R., Wolfe J. M., Moore D. F. Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by amplification of rRNA. J Clin Microbiol. 1993 Sep;31(9):2410–2416. doi: 10.1128/jcm.31.9.2410-2416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrissey D. V., Lombardo M., Eldredge J. K., Kearney K. R., Groody E. P., Collins M. L. Nucleic acid hybridization assays employing dA-tailed capture probes. I. Multiple capture methods. Anal Biochem. 1989 Sep;181(2):345–359. doi: 10.1016/0003-2697(89)90255-8. [DOI] [PubMed] [Google Scholar]
- Nolte F. S., Metchock B., McGowan J. E., Jr, Edwards A., Okwumabua O., Thurmond C., Mitchell P. S., Plikaytis B., Shinnick T. Direct detection of Mycobacterium tuberculosis in sputum by polymerase chain reaction and DNA hybridization. J Clin Microbiol. 1993 Jul;31(7):1777–1782. doi: 10.1128/jcm.31.7.1777-1782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfyffer G. E., Kissling P., Wirth R., Weber R. Direct detection of Mycobacterium tuberculosis complex in respiratory specimens by a target-amplified test system. J Clin Microbiol. 1994 Apr;32(4):918–923. doi: 10.1128/jcm.32.4.918-923.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shah J. S., Liu J., Buxton D., Hendricks A., Robinson L., Radcliffe G., King W., Lane D., Olive D. M., Klinger J. D. Q-beta replicase-amplified assay for detection of Mycobacterium tuberculosis directly from clinical specimens. J Clin Microbiol. 1995 Jun;33(6):1435–1441. doi: 10.1128/jcm.33.6.1435-1441.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shah J. S., Liu J., Smith J., Popoff S., Radcliffe G., O'Brien W. J., Serpe G., Olive D. M., King W. Novel, ultrasensitive, Q-beta replicase-amplified hybridization assay for detection of Chlamydia trachomatis. J Clin Microbiol. 1994 Nov;32(11):2718–2724. doi: 10.1128/jcm.32.11.2718-2724.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. H., Radcliffe G., Rigby S., Mahan D., Lane D. J., Klinger J. D. Performance of an automated Q-beta replicase amplification assay for Mycobacterium tuberculosis in a clinical trial. J Clin Microbiol. 1997 Jun;35(6):1484–1491. doi: 10.1128/jcm.35.6.1484-1491.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone B. B., Cohen S. P., Breton G. L., Nietupski R. M., Pelletier D. A., Fiandaca M. J., Moe J. G., Smith J. H., Shah J. S., Weisburg W. G. Detection of rRNA from four respiratory pathogens using an automated Q beta replicase assay. Mol Cell Probes. 1996 Oct;10(5):359–370. doi: 10.1006/mcpr.1996.0049. [DOI] [PubMed] [Google Scholar]
- Walker G. T., Little M. C., Nadeau J. G., Shank D. D. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):392–396. doi: 10.1073/pnas.89.1.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winn-Deen E. S., Batt C. A., Wiedmann M. Non-radioactive detection of Mycobacterium tuberculosis LCR products in a microtitre plate format. Mol Cell Probes. 1993 Jun;7(3):179–186. doi: 10.1006/mcpr.1993.1027. [DOI] [PubMed] [Google Scholar]
- van der Vliet G. M., Schukkink R. A., van Gemen B., Schepers P., Klatser P. R. Nucleic acid sequence-based amplification (NASBA) for the identification of mycobacteria. J Gen Microbiol. 1993 Oct;139(10):2423–2429. doi: 10.1099/00221287-139-10-2423. [DOI] [PubMed] [Google Scholar]