Abstract
Thirty-seven bacterial clones producing human recombinant monoclonal antibody Fab fragments (rFabs) reactive to herpes simplex virus (HSV) antigens were selected from a human combinatorial antibody library constructed in a phage-display vector by a panning procedure against an HSV lysate. Thirty-four of the HSV-specific rFabs were able to specifically recognize HSV-infected cells in indirect immunofluorescence (IF) assays; of these, 25 recognized cells infected by either HSV type 1 (HSV-1) or HSV-2, while 9 recognized only HSV-1-infected cells. One HSV type-common rFab (rFab H37) and one HSV-1-specific rFab (rFab H85) were further evaluated as reagents for viral detection and typing by IF staining in 134 HSV-positive (72 HSV-1 and 62 HSV-2) viral cultures from clinical specimens. The results obtained with these two rFabs were fully consistent with those obtained with a commercial preparation of fluorescein-labeled anti-HSV type-specific murine monoclonal antibodies. The detection sensitivity with the type-common rFab in indirect IF assays was higher overall than that provided by the type-specific murine monoclonal antibodies. Preparations of rFabs suitable for IF staining can be easily and inexpensively obtained in a clinical microbiology laboratory from Escherichia coli cultures. Similar HSV-specific rFabs, therefore, could be advantageous for in vitro diagnostic purposes.
Full Text
The Full Text of this article is available as a PDF (426.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balkovic E. S., Hsiung G. D. Comparison of immunofluorescence with commercial monoclonal antibodies to biochemical and biological techniques for typing clinical herpes simplex virus isolates. J Clin Microbiol. 1985 Nov;22(5):870–872. doi: 10.1128/jcm.22.5.870-872.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbas C. F., 3rd, Crowe J. E., Jr, Cababa D., Jones T. M., Zebedee S. L., Murphy B. R., Chanock R. M., Burton D. R. Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10164–10168. doi: 10.1073/pnas.89.21.10164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbas C. F., 3rd, Kang A. S., Lerner R. A., Benkovic S. J. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7978–7982. doi: 10.1073/pnas.88.18.7978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burioni R., Williamson R. A., Sanna P. P., Bloom F. E., Burton D. R. Recombinant human Fab to glycoprotein D neutralizes infectivity and prevents cell-to-cell transmission of herpes simplex viruses 1 and 2 in vitro. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):355–359. doi: 10.1073/pnas.91.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burton D. R., Barbas C. F., 3rd, Persson M. A., Koenig S., Chanock R. M., Lerner R. A. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10134–10137. doi: 10.1073/pnas.88.22.10134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cattani P., Plaisant P., Manzara S., Capodicasa N., Burioni R., Rossolini G. M., Satta G. Cloning and characterization of human recombinant antibody Fab fragments specific for types 1 and 2 herpes simplex virus. New Microbiol. 1995 Apr;18(2):135–142. [PubMed] [Google Scholar]
- Corey L., Adams H. G., Brown Z. A., Holmes K. K. Genital herpes simplex virus infections: clinical manifestations, course, and complications. Ann Intern Med. 1983 Jun;98(6):958–972. doi: 10.7326/0003-4819-98-6-958. [DOI] [PubMed] [Google Scholar]
- Corey L., Whitley R. J., Stone E. F., Mohan K. Difference between herpes simplex virus type 1 and type 2 neonatal encephalitis in neurological outcome. Lancet. 1988 Jan 2;1(8575-6):1–4. doi: 10.1016/s0140-6736(88)90997-x. [DOI] [PubMed] [Google Scholar]
- Dragavon J., Peterson E., Ashley R., Lafferty W., Corey L. Routine typing of herpes simplex virus isolates. Diagn Microbiol Infect Dis. 1985 May;3(3):269–270. doi: 10.1016/0732-8893(85)90040-9. [DOI] [PubMed] [Google Scholar]
- Fung J. C., Shanley J., Tilton R. C. Comparison of the detection of herpes simplex virus in direct clinical specimens with herpes simplex virus-specific DNA probes and monoclonal antibodies. J Clin Microbiol. 1985 Nov;22(5):748–753. doi: 10.1128/jcm.22.5.748-753.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gleaves C. A., Wilson D. J., Wold A. D., Smith T. F. Detection and serotyping of herpes simplex virus in MRC-5 cells by use of centrifugation and monoclonal antibodies 16 h postinoculation. J Clin Microbiol. 1985 Jan;21(1):29–32. doi: 10.1128/jcm.21.1.29-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodyear H. M., Wilson P., Cropper L., Laidler P. W., Sharp I. R., Thaker U., Kenny P. A., Price E. H., Harper J. I. Rapid diagnosis of cutaneous herpes simplex infections using specific monoclonal antibodies. Clin Exp Dermatol. 1994 Jul;19(4):294–297. doi: 10.1111/j.1365-2230.1994.tb01198.x. [DOI] [PubMed] [Google Scholar]
- Johnston S. L., Wellens K. Comparative evaluation of four commercially available monoclonal antibodies for culture confirmation of herpes simplex virus infection. J Clin Microbiol. 1992 Jul;30(7):1874–1875. doi: 10.1128/jcm.30.7.1874-1875.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lafferty W. E., Coombs R. W., Benedetti J., Critchlow C., Corey L. Recurrences after oral and genital herpes simplex virus infection. Influence of site of infection and viral type. N Engl J Med. 1987 Jun 4;316(23):1444–1449. doi: 10.1056/NEJM198706043162304. [DOI] [PubMed] [Google Scholar]
- Lipson S. M., Salo R. J., Leonardi G. P. Evaluation of five monoclonal antibody-based kits or reagents for the identification and culture confirmation of herpes simplex virus. J Clin Microbiol. 1991 Mar;29(3):466–469. doi: 10.1128/jcm.29.3.466-469.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipson S. M., Schutzbank T. E., Szabo K. Evaluation of three immunofluorescence assays for culture confirmation and typing of herpes simplex virus. J Clin Microbiol. 1987 Feb;25(2):391–394. doi: 10.1128/jcm.25.2.391-394.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Persson M. A., Caothien R. H., Burton D. R. Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2432–2436. doi: 10.1073/pnas.88.6.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prober C. G., Sullender W. M., Yasukawa L. L., Au D. S., Yeager A. S., Arvin A. M. Low risk of herpes simplex virus infections in neonates exposed to the virus at the time of vaginal delivery to mothers with recurrent genital herpes simplex virus infections. N Engl J Med. 1987 Jan 29;316(5):240–244. doi: 10.1056/NEJM198701293160503. [DOI] [PubMed] [Google Scholar]
- Reeves W. C., Corey L., Adams H. G., Vontver L. A., Holmes K. K. Risk of recurrence after first episodes of genital herpes. Relation to HSV type and antibody response. N Engl J Med. 1981 Aug 6;305(6):315–319. doi: 10.1056/NEJM198108063050604. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanna P. P., De Logu A., Williamson R. A., Hom Y. L., Straus S. E., Bloom F. E., Burton D. R. Protection of nude mice by passive immunization with a type-common human recombinant monoclonal antibody against HSV. Virology. 1996 Jan 1;215(1):101–106. doi: 10.1006/viro.1996.0011. [DOI] [PubMed] [Google Scholar]
- Sanna P. P., Williamson R. A., De Logu A., Bloom F. E., Burton D. R. Directed selection of recombinant human monoclonal antibodies to herpes simplex virus glycoproteins from phage display libraries. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6439–6443. doi: 10.1073/pnas.92.14.6439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saral R. Management of mucocutaneous herpes simplex virus infections in immunocompromised patients. Am J Med. 1988 Aug 29;85(2A):57–60. [PubMed] [Google Scholar]
- Swierkosz E. M., Arens M. Q., Schmidt R. R., Armstrong T. Evaluation of two immunofluorescence assays with monoclonal antibodies for typing of herpes simplex virus. J Clin Microbiol. 1985 Apr;21(4):643–644. doi: 10.1128/jcm.21.4.643-644.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitley R. J. Herpes simplex virus infections of the central nervous system. A review. Am J Med. 1988 Aug 29;85(2A):61–67. [PubMed] [Google Scholar]
- Williamson R. A., Burioni R., Sanna P. P., Partridge L. J., Barbas C. F., 3rd, Burton D. R. Human monoclonal antibodies against a plethora of viral pathogens from single combinatorial libraries. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4141–4145. doi: 10.1073/pnas.90.9.4141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson P., Cropper L. M., Patt R., Sharp I. R. Production of herpes simplex virus fluorescein labelled typing reagents. J Virol Methods. 1993 Nov;45(1):19–26. doi: 10.1016/0166-0934(93)90136-f. [DOI] [PubMed] [Google Scholar]
- zur Hausen H., O'Neill F. J., Freese U. K., Hecker E. Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature. 1978 Mar 23;272(5651):373–375. doi: 10.1038/272373a0. [DOI] [PubMed] [Google Scholar]