Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Jun;35(6):1560–1564. doi: 10.1128/jcm.35.6.1560-1564.1997

Detection of human papillomavirus type 16 early-gene transcription by reverse transcription-PCR is associated with abnormal cervical cytology.

C Biswas 1, B Kell 1, C Mant 1, R J Jewers 1, J Cason 1, P Muir 1, K S Raju 1, J M Best 1
PMCID: PMC229787  PMID: 9163482

Abstract

Human papillomavirus type 16 (HPV-16) is associated with abnormal Papanicolou smears, indicative of cervical intraepithelial neoplasia. HPV-16 is the most common genital HPV and is found in up to 40% of young women with normal cervical cytology. In order to investigate whether transcriptionally active HPV-16 infection is associated with abnormal cervical smears, a reverse transcription-nested PCR assay with primers from the E5 open reading frame was developed to detect all HPV-16 early-region mRNA (E-mRNA) transcripts. It was used to study HPV-16-infected women with normal and abnormal cervical cytologies to obtain evidence of active infection. Among HPV-16 DNA-positive women, HPV-16 E-mRNA was detected in 15 of 37 (40.5%) women with abnormal cervical cytology but in only 4 of 35 (11.4%) women with normal cytology (P = 0.007). Thus, HPV-16 E-mRNA transcription is associated with abnormal cervical smears and may have value as a prognostic marker of progressive disease.

Full Text

The Full Text of this article is available as a PDF (447.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker C. C., Phelps W. C., Lindgren V., Braun M. J., Gonda M. A., Howley P. M. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol. 1987 Apr;61(4):962–971. doi: 10.1128/jvi.61.4.962-971.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bavin P. J., Giles J. A., Deery A., Crow J., Griffiths P. D., Emery V. C., Walker P. G. Use of semi-quantitative PCR for human papillomavirus DNA type 16 to identify women with high grade cervical disease in a population presenting with a mildly dyskaryotic smear report. Br J Cancer. 1993 Mar;67(3):602–605. doi: 10.1038/bjc.1993.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  4. Bosma T. J., Corbett K. M., O'Shea S., Banatvala J. E., Best J. M. PCR for detection of rubella virus RNA in clinical samples. J Clin Microbiol. 1995 May;33(5):1075–1079. doi: 10.1128/jcm.33.5.1075-1079.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campion M. J., McCance D. J., Cuzick J., Singer A. Progressive potential of mild cervical atypia: prospective cytological, colposcopic, and virological study. Lancet. 1986 Aug 2;2(8501):237–240. doi: 10.1016/s0140-6736(86)92067-2. [DOI] [PubMed] [Google Scholar]
  6. Cavuslu S., Starkey W. G., Kaye J. N., Biswas C., Mant C., Kell B., Rice P., Best J. M., Cason J. Detection of human papillomavirus type-16 DNA utilising microtitre-plate based amplification reactions and a solid-phase enzyme-immunoassay detection system. J Virol Methods. 1996 Apr 26;58(1-2):59–69. doi: 10.1016/0166-0934(95)01988-x. [DOI] [PubMed] [Google Scholar]
  7. Cox J. T., Lorincz A. T., Schiffman M. H., Sherman M. E., Cullen A., Kurman R. J. Human papillomavirus testing by hybrid capture appears to be useful in triaging women with a cytologic diagnosis of atypical squamous cells of undetermined significance. Am J Obstet Gynecol. 1995 Mar;172(3):946–954. doi: 10.1016/0002-9378(95)90026-8. [DOI] [PubMed] [Google Scholar]
  8. Cuzick J., Terry G., Ho L., Hollingworth T., Anderson M. HPV in cervical smears. Lancet. 1992 Jul 11;340(8811):112–113. doi: 10.1016/0140-6736(92)90431-2. [DOI] [PubMed] [Google Scholar]
  9. Cuzick J., Terry G., Ho L., Hollingworth T., Anderson M. Human papillomavirus type 16 in cervical smears as predictor of high-grade cervical intraepithelial neoplasia [corrected]. Lancet. 1992 Apr 18;339(8799):959–960. doi: 10.1016/0140-6736(92)91532-d. [DOI] [PubMed] [Google Scholar]
  10. Cuzick J., Terry G., Ho L., Hollingworth T., Anderson M. Type-specific human papillomavirus DNA in abnormal smears as a predictor of high-grade cervical intraepithelial neoplasia. Br J Cancer. 1994 Jan;69(1):167–171. doi: 10.1038/bjc.1994.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. D'Aquila R. T., Bechtel L. J., Videler J. A., Eron J. J., Gorczyca P., Kaplan J. C. Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Res. 1991 Jul 11;19(13):3749–3749. doi: 10.1093/nar/19.13.3749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doorbar J., Parton A., Hartley K., Banks L., Crook T., Stanley M., Crawford L. Detection of novel splicing patterns in a HPV16-containing keratinocyte cell line. Virology. 1990 Sep;178(1):254–262. doi: 10.1016/0042-6822(90)90401-c. [DOI] [PubMed] [Google Scholar]
  13. Falcinelli C., Claas E., Kleter B., Quint W. G. Detection of the human papilloma virus type 16 mRNA-transcripts in cytological abnormal scrapings. J Med Virol. 1992 Jun;37(2):93–98. doi: 10.1002/jmv.1890370204. [DOI] [PubMed] [Google Scholar]
  14. Fuchs P. G., Pfister H. Transcription of papillomavirus genomes. Intervirology. 1994;37(3-4):159–167. doi: 10.1159/000150374. [DOI] [PubMed] [Google Scholar]
  15. Fujii T., Tsukazaki K., Kiguchi K., Kubushiro K., Yajima M., Nozawa S. The major E6/E7 transcript of HPV-16 in exfoliated cells from cervical neoplasia patients. Gynecol Oncol. 1995 Aug;58(2):210–215. doi: 10.1006/gyno.1995.1213. [DOI] [PubMed] [Google Scholar]
  16. Gaillard C., Strauss F. Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Res. 1990 Jan 25;18(2):378–378. doi: 10.1093/nar/18.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Geisen C., Delius H., Lichter P., Kahn T. A transcribed human sequence related to the mouse HC1 and the human papillomavirus type 18 E5 genes is located at chromosome 7p13-14. Hum Mol Genet. 1995 Aug;4(8):1337–1345. doi: 10.1093/hmg/4.8.1337. [DOI] [PubMed] [Google Scholar]
  18. Han X., Lyle R., Eustace D. L., Jewers R. J., Parrington J. M., Das A., Chana T., Dagg B., Money S., Bates T. D. XH1--a new cervical carcinoma cell line and xenograft model of tumour invasion, 'metastasis' and regression. Br J Cancer. 1991 Oct;64(4):645–654. doi: 10.1038/bjc.1991.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hsu E. M., McNicol P. J., Guijon F. B., Paraskevas M. Quantification of HPV-16 E6-E7 transcription in cervical intraepithelial neoplasia by reverse transcriptase polymerase chain reaction. Int J Cancer. 1993 Sep 30;55(3):397–401. doi: 10.1002/ijc.2910550311. [DOI] [PubMed] [Google Scholar]
  20. Jeon S., Lambert P. F. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1654–1658. doi: 10.1073/pnas.92.5.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnsen C. K., Stanley M., Norrild B. Analysis of human papillomavirus type 16 E5 oncogene expression in vitro and from bicistronic messenger RNAs. Intervirology. 1995;38(6):339–345. doi: 10.1159/000150461. [DOI] [PubMed] [Google Scholar]
  22. Kell B., Jewers R. J., Cason J., Best J. M. Cellular proteins associated with the E5 oncoprotein of human papillomavirus type 16. Biochem Soc Trans. 1994 Aug;22(3):333S–333S. doi: 10.1042/bst022333s. [DOI] [PubMed] [Google Scholar]
  23. Leechanachai P., Banks L., Moreau F., Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene. 1992 Jan;7(1):19–25. [PubMed] [Google Scholar]
  24. Leptak C., Ramon y Cajal S., Kulke R., Horwitz B. H., Riese D. J., 2nd, Dotto G. P., DiMaio D. Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J Virol. 1991 Dec;65(12):7078–7083. doi: 10.1128/jvi.65.12.7078-7083.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lorincz A. T., Reid R., Jenson A. B., Greenberg M. D., Lancaster W., Kurman R. J. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol. 1992 Mar;79(3):328–337. doi: 10.1097/00006250-199203000-00002. [DOI] [PubMed] [Google Scholar]
  26. McCance D. J., Kopan R., Fuchs E., Laimins L. A. Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7169–7173. doi: 10.1073/pnas.85.19.7169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McIndoe W. A., McLean M. R., Jones R. W., Mullins P. R. The invasive potential of carcinoma in situ of the cervix. Obstet Gynecol. 1984 Oct;64(4):451–458. [PubMed] [Google Scholar]
  28. McNicol P., Guijon F., Wayne S., Hidajat R., Paraskevas M. Expression of human papillomavirus type 16 E6-E7 open reading frame varies quantitatively in biopsy tissue from different grades of cervical intraepithelial neoplasia. J Clin Microbiol. 1995 May;33(5):1169–1173. doi: 10.1128/jcm.33.5.1169-1173.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Muir P., Nicholson F., Jhetam M., Neogi S., Banatvala J. E. Rapid diagnosis of enterovirus infection by magnetic bead extraction and polymerase chain reaction detection of enterovirus RNA in clinical specimens. J Clin Microbiol. 1993 Jan;31(1):31–38. doi: 10.1128/jcm.31.1.31-38.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pim D., Collins M., Banks L. Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene. 1992 Jan;7(1):27–32. [PubMed] [Google Scholar]
  31. Saiki R. K., Bugawan T. L., Horn G. T., Mullis K. B., Erlich H. A. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986 Nov 13;324(6093):163–166. doi: 10.1038/324163a0. [DOI] [PubMed] [Google Scholar]
  32. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985 Mar 7;314(6006):111–114. doi: 10.1038/314111a0. [DOI] [PubMed] [Google Scholar]
  33. Sherman L., Alloul N., Golan I., Durst M., Baram A. Expression and splicing patterns of human papillomavirus type-16 mRNAs in pre-cancerous lesions and carcinomas of the cervix, in human keratinocytes immortalized by HPV 16, and in cell lines established from cervical cancers. Int J Cancer. 1992 Feb 1;50(3):356–364. doi: 10.1002/ijc.2910500305. [DOI] [PubMed] [Google Scholar]
  34. Smits H. L., Cornelissen M. T., Jebbink M. F., van den Tweel J. G., Struyk A. P., Briët M., ter Schegget J. Human papillomavirus type 16 transcripts expressed from viral-cellular junctions and full-length viral copies in CaSki cells and in a cervical carcinoma. Virology. 1991 Jun;182(2):870–873. doi: 10.1016/0042-6822(91)90632-l. [DOI] [PubMed] [Google Scholar]
  35. Stoler M. H., Rhodes C. R., Whitbeck A., Wolinsky S. M., Chow L. T., Broker T. R. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol. 1992 Feb;23(2):117–128. doi: 10.1016/0046-8177(92)90232-r. [DOI] [PubMed] [Google Scholar]
  36. Straight S. W., Hinkle P. M., Jewers R. J., McCance D. J. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol. 1993 Aug;67(8):4521–4532. doi: 10.1128/jvi.67.8.4521-4532.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yee C., Krishnan-Hewlett I., Baker C. C., Schlegel R., Howley P. M. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol. 1985 Jun;119(3):361–366. [PMC free article] [PubMed] [Google Scholar]
  38. van den Brule A. J., Meijer C. J., Bakels V., Kenemans P., Walboomers J. M. Rapid detection of human papillomavirus in cervical scrapes by combined general primer-mediated and type-specific polymerase chain reaction. J Clin Microbiol. 1990 Dec;28(12):2739–2743. doi: 10.1128/jcm.28.12.2739-2743.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. zur Hausen H. Human papillomaviruses in the pathogenesis of anogenital cancer. Virology. 1991 Sep;184(1):9–13. doi: 10.1016/0042-6822(91)90816-t. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES