Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Jul;35(7):1656–1660. doi: 10.1128/jcm.35.7.1656-1660.1997

A subtype-specific peptide-based enzyme immunoassay for detection of antibodies to the G protein of human respiratory syncytial virus is more sensitive than routine serological tests.

J P Langedijk 1, A H Brandenburg 1, W G Middel 1, A Osterhaus 1, R H Meloen 1, J T van Oirschot 1
PMCID: PMC229816  PMID: 9196168

Abstract

Peptides deduced from the central conserved region (residues 158 to 189) of protein G of human respiratory syncytial virus (HRSV) subtypes A and B were used as antigens in subtype-specific enzyme-linked immunosorbent assays (G-peptide ELISAs). These G-peptide ELISAs were compared with seven other serological assays to detect HRSV infection: ELISAs based on complete protein G, on fusion protein F, and on nucleoprotein N; a complement fixation assay; a virus neutralization test; and ELISAs for the detection of immunoglobulin A (IgA) or IgM antibodies specific for HRSV. In paired serum samples from patients with HRSV infection, more infections were diagnosed by the G-peptide ELISA (67%) than by all other serological tests combined (48%). Furthermore, for 16 of 18 patients (89%), the G-peptide ELISAs were able to differentiate between antibodies against HRSV subtypes A and B. This study shows that peptides corresponding to the central conserved region of the attachment protein G of HRSV can successfully be used as antigens in immunoassays. The G-peptide ELISA appeared to be more sensitive than conventional tests for the detection of HRSV antibody titer rises.

Full Text

The Full Text of this article is available as a PDF (119.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerlind-Stopner B., Utter G., Mufson M. A., Orvell C., Lerner R. A., Norrby E. A subgroup-specific antigenic site in the G protein of respiratory syncytial virus forms a disulfide-bonded loop. J Virol. 1990 Oct;64(10):5143–5148. doi: 10.1128/jvi.64.10.5143-5148.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cane P. A., Matthews D. A., Pringle C. R. Identification of variable domains of the attachment (G) protein of subgroup A respiratory syncytial viruses. J Gen Virol. 1991 Sep;72(Pt 9):2091–2096. doi: 10.1099/0022-1317-72-9-2091. [DOI] [PubMed] [Google Scholar]
  3. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Groen J., van der Groen G., Hoofd G., Osterhaus A. Comparison of immunofluorescence and enzyme-linked immunosorbent assays for the serology of Hantaan virus infections. J Virol Methods. 1989 Feb;23(2):195–203. doi: 10.1016/0166-0934(89)90133-x. [DOI] [PubMed] [Google Scholar]
  5. Johnson P. R., Spriggs M. K., Olmsted R. A., Collins P. L. The G glycoprotein of human respiratory syncytial viruses of subgroups A and B: extensive sequence divergence between antigenically related proteins. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5625–5629. doi: 10.1073/pnas.84.16.5625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Langedijk J. P., Middel W. G., Schaaper W. M., Meloen R. H., Kramps J. A., Brandenburg A. H., van Oirschot J. T. Type-specific serologic diagnosis of respiratory syncytial virus infection, based on a synthetic peptide of the attachment protein G. J Immunol Methods. 1996 Jun 21;193(2):157–166. doi: 10.1016/0022-1759(96)00039-7. [DOI] [PubMed] [Google Scholar]
  7. Langedijk J. P., Schaaper W. M., Meloen R. H., van Oirschot J. T. Proposed three-dimensional model for the attachment protein G of respiratory syncytial virus. J Gen Virol. 1996 Jun;77(Pt 6):1249–1257. doi: 10.1099/0022-1317-77-6-1249. [DOI] [PubMed] [Google Scholar]
  8. Norrby E., Mufson M. A., Alexander H., Houghten R. A., Lerner R. A. Site-directed serology with synthetic peptides representing the large glycoprotein G of respiratory syncytial virus. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6572–6576. doi: 10.1073/pnas.84.18.6572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sullender W. M., Mufson M. A., Anderson L. J., Wertz G. W. Genetic diversity of the attachment protein of subgroup B respiratory syncytial viruses. J Virol. 1991 Oct;65(10):5425–5434. doi: 10.1128/jvi.65.10.5425-5434.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Welliver R. C. Detection, pathogenesis, and therapy of respiratory syncytial virus infections. Clin Microbiol Rev. 1988 Jan;1(1):27–39. doi: 10.1128/cmr.1.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wertz G. W., Collins P. L., Huang Y., Gruber C., Levine S., Ball L. A. Nucleotide sequence of the G protein gene of human respiratory syncytial virus reveals an unusual type of viral membrane protein. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4075–4079. doi: 10.1073/pnas.82.12.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES