Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Jul;35(7):1822–1828. doi: 10.1128/jcm.35.7.1822-1828.1997

Application of DNA typing methods and genetic analysis to epidemiology and taxonomy of Saccharomyces isolates.

K V Clemons 1, P Park 1, J H McCusker 1, M J McCullough 1, R W Davis 1, D A Stevens 1
PMCID: PMC229850  PMID: 9196202

Abstract

We have previously described differences in phenotype and virulence among clinical and nonclinical isolates of Saccharomyces. To further characterize these isolates, a comparison of restriction fragment length polymorphism (RFLP) patterns and genetic analysis were done. The cellular DNA of each of 49 clinical and 11 nonclinical isolates of Saccharomyces was digested with the endonuclease EcoRI, and the resultant fragments were separated by electrophoresis. Sixty isolates were grouped on the basis of the presence (group B) or absence (group A) of a 3-kb band. Group A contained 43 isolates (35 clinical and 8 nonclinical isolates) in 31 discernible subgroups, and group B had 17 isolates (14 clinical and 3 nonclinical isolates) in 10 subgroups. Interestingly, six of eight known vaginal isolates were group B, with four of those six being identical. Virulence of isolates was associated with membership in group A (P = 0.03). Comparison of known members of sibling species within the genus Saccharomyces, which cannot be distinguished by standard biochemical tests, showed that S. paradoxus, S. bayanus, and S. cerevisiae could be differentiated by RFLP analysis. Genetic analysis of the isolates forming viable spores showed that most group A isolates were diploid and members of the species S. cerevisiae. Those group A and B isolates unable to form viable spores may be diploid hybrids between Saccharomyces species. The group B isolates that formed viable spores were tetraploid and may also be interspecific hybrids. Overall, clinical isolates of Saccharomyces were very heterogeneous and exhibited little clonality. RFLP pattern analysis could be a useful method of demonstrating transmission in patients with infection or between environmental sources and patients.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J., Puskas-Rozsa S., Simlar J., Wilke C. M. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr Genet. 1992 Jul;22(1):13–19. doi: 10.1007/BF00351736. [DOI] [PubMed] [Google Scholar]
  2. Bidenne C., Blondin B., Dequin S., Vezinhet F. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet. 1992 Jul;22(1):1–7. doi: 10.1007/BF00351734. [DOI] [PubMed] [Google Scholar]
  3. Byron J. K., Clemons K. V., McCusker J. H., Davis R. W., Stevens D. A. Pathogenicity of Saccharomyces cerevisiae in complement factor five-deficient mice. Infect Immun. 1995 Feb;63(2):478–485. doi: 10.1128/iai.63.2.478-485.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cardinali G., Martini A. Electrophoretic karyotypes of authentic strains of the sensu stricto group of the genus Saccharomyces. Int J Syst Bacteriol. 1994 Oct;44(4):791–797. doi: 10.1099/00207713-44-4-791. [DOI] [PubMed] [Google Scholar]
  5. Clemons K. V., McCusker J. H., Davis R. W., Stevens D. A. Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J Infect Dis. 1994 Apr;169(4):859–867. doi: 10.1093/infdis/169.4.859. [DOI] [PubMed] [Google Scholar]
  6. Clemons K. V., Shankland G. S., Richardson M. D., Stevens D. A. Epidemiologic study by DNA typing of a Candida albicans outbreak in heroin addicts. J Clin Microbiol. 1991 Jan;29(1):205–207. doi: 10.1128/jcm.29.1.205-207.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eng R. H., Drehmel R., Smith S. M., Goldstein E. J. Saccharomyces cerevisiae infections in man. Sabouraudia. 1984;22(5):403–407. [PubMed] [Google Scholar]
  8. Guillamón J. M., Barrio E., Huerta T., Querol A. Rapid characterization of four species of the Saccharomyces sensu stricto complex according to mitochondrial DNA patterns. Int J Syst Bacteriol. 1994 Oct;44(4):708–714. doi: 10.1099/00207713-44-4-708. [DOI] [PubMed] [Google Scholar]
  9. Longo E., Vezinhet F. Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae. Appl Environ Microbiol. 1993 Jan;59(1):322–326. doi: 10.1128/aem.59.1.322-326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martini A. V., Martini A. Three newly delimited species of Saccharomyces sensu stricto. Antonie Van Leeuwenhoek. 1987;53(2):77–84. doi: 10.1007/BF00419503. [DOI] [PubMed] [Google Scholar]
  11. McCusker J. H., Clemons K. V., Stevens D. A., Davis R. W. Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics. 1994 Apr;136(4):1261–1269. doi: 10.1093/genetics/136.4.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCusker J. H., Clemons K. V., Stevens D. A., Davis R. W. Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae. Infect Immun. 1994 Dec;62(12):5447–5455. doi: 10.1128/iai.62.12.5447-5455.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Messner R., Prillinger H. Saccharomyces species assignment by long range ribotyping. Antonie Van Leeuwenhoek. 1995;67(4):363–370. doi: 10.1007/BF00872936. [DOI] [PubMed] [Google Scholar]
  14. Molina F. I., Inoue T., Jong S. C. Ribosomal DNA restriction analysis reveals genetic heterogeneity in Saccharomyces cerevisiae Meyen ex Hansen. Int J Syst Bacteriol. 1992 Jul;42(3):499–502. doi: 10.1099/00207713-42-3-499. [DOI] [PubMed] [Google Scholar]
  15. Molina F. I., Jong S. C., Huffman J. L. PCR amplification of the 3' external transcribed and intergenic spacers of the ribosomal DNA repeat unit in three species of Saccharomyces. FEMS Microbiol Lett. 1993 Apr 15;108(3):259–263. doi: 10.1111/j.1574-6968.1993.tb06112.x. [DOI] [PubMed] [Google Scholar]
  16. Nielsen H., Stenderup J., Bruun B. Fungemia with Saccharomycetaceae. Report of four cases and review of the literature. Scand J Infect Dis. 1990;22(5):581–584. doi: 10.3109/00365549009027100. [DOI] [PubMed] [Google Scholar]
  17. Oriol A., Ribera J. M., Arnal J., Milla F., Batlle M., Feliu E. Saccharomyces cerevisiae septicemia in a patient with myelodysplastic syndrome. Am J Hematol. 1993 Aug;43(4):325–326. doi: 10.1002/ajh.2830430424. [DOI] [PubMed] [Google Scholar]
  18. Perfect J. R., Magee B. B., Magee P. T. Separation of chromosomes of Cryptococcus neoformans by pulsed field gel electrophoresis. Infect Immun. 1989 Sep;57(9):2624–2627. doi: 10.1128/iai.57.9.2624-2627.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Philippsen P., Stotz A., Scherf C. DNA of Saccharomyces cerevisiae. Methods Enzymol. 1991;194:169–182. doi: 10.1016/0076-6879(91)94014-4. [DOI] [PubMed] [Google Scholar]
  20. Sangeorzan J. A., Bradley S. F., He X., Zarins L. T., Ridenour G. L., Tiballi R. N., Kauffman C. A. Epidemiology of oral candidiasis in HIV-infected patients: colonization, infection, treatment, and emergence of fluconazole resistance. Am J Med. 1994 Oct;97(4):339–346. doi: 10.1016/0002-9343(94)90300-x. [DOI] [PubMed] [Google Scholar]
  21. Scherer S., Stevens D. A. A Candida albicans dispersed, repeated gene family and its epidemiologic applications. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1452–1456. doi: 10.1073/pnas.85.5.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scherer S., Stevens D. A. Application of DNA typing methods to epidemiology and taxonomy of Candida species. J Clin Microbiol. 1987 Apr;25(4):675–679. doi: 10.1128/jcm.25.4.675-679.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sobel J. D., Vazquez J., Lynch M., Meriwether C., Zervos M. J. Vaginitis due to Saccharomyces cerevisiae: epidemiology, clinical aspects, and therapy. Clin Infect Dis. 1993 Jan;16(1):93–99. doi: 10.1093/clinids/16.1.93. [DOI] [PubMed] [Google Scholar]
  24. Spitzer E. D., Lasker B. A., Travis S. J., Kobayashi G. S., Medoff G. Use of mitochondrial and ribosomal DNA polymorphisms to classify clinical and soil isolates of Histoplasma capsulatum. Infect Immun. 1989 May;57(5):1409–1412. doi: 10.1128/iai.57.5.1409-1412.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stevens D. A., Odds F. C., Scherer S. Application of DNA typing methods to Candida albicans epidemiology and correlations with phenotype. Rev Infect Dis. 1990 Mar-Apr;12(2):258–266. doi: 10.1093/clinids/12.2.258. [DOI] [PubMed] [Google Scholar]
  26. The International Community of Yeast Genetics and Molecular Biology. Yeast. 1992 Aug;8 (Suppl A):1–218. [PubMed] [Google Scholar]
  27. Vaughan-Martini A., Martini A., Cardinali G. Electrophoretic karyotyping as a taxonomic tool in the genus Saccharomyces. Antonie Van Leeuwenhoek. 1993 Feb;63(2):145–156. doi: 10.1007/BF00872389. [DOI] [PubMed] [Google Scholar]
  28. Zerva L., Hollis R. J., Pfaller M. A. In vitro susceptibility testing and DNA typing of Saccharomyces cerevisiae clinical isolates. J Clin Microbiol. 1996 Dec;34(12):3031–3034. doi: 10.1128/jcm.34.12.3031-3034.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES