Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Jul;35(7):1835–1841. doi: 10.1128/jcm.35.7.1835-1841.1997

Evidence for numerous omp1 alleles of porcine Chlamydia trachomatis and novel chlamydial species obtained by PCR.

B Kaltenböck 1, N Schmeer 1, R Schneider 1
PMCID: PMC229852  PMID: 9196204

Abstract

A nested PCR for genus-specific amplification of the Chlamydia omp1 locus was established. This PCR detected single template molecules in 200-microl specimen aliquots. Amplified chlamydial omp1 alleles were typed by heminested species PCRs and allele PCRs. We applied this method to 407 specimens from several host animals with various clinical conditions, and we detected prevalences of chlamydiae from 6 to 50%. Amplicons from peacock enteritis and equine infertility specimens were not typeable according to present omp1 allelic criteria for the chlamydial species. DNA sequencing revealed novel omp1 alleles which were 29.9 and 47.6% divergent in the deduced peptide sequences from the most closely related chlamydiae. Phylogenetic reconstruction indicated segregation of these alleles from the current four chlamydial species (90 and 97% bootstrap support), thus strongly suggesting the existence of additional chlamydial species. Allele typing of amplicons from swine with intestinal, urogenital, and respiratory infections demonstrated several unique omp1 allelic variants of Chlamydia trachomatis. These novel alleles had deduced peptide sequences which were 11.6 to 19% divergent from porcine C. trachomatis S45. Mutations were clustered in the C-terminal region of variable segment IV of the omp1 locus encoding subspecies and serovar determinants of the chlamydial major outer membrane protein, thus implying that there are numerous serovars of porcine C. trachomatis. These results demonstrate the need for routine application of sensitive genus-specific detection of chlamydiae in animal specimens and suggest a more prominent role than anticipated for chlamydiae in animal diseases.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baehr W., Zhang Y. X., Joseph T., Su H., Nano F. E., Everett K. D., Caldwell H. D. Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4000–4004. doi: 10.1073/pnas.85.11.4000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ehlen T., Dubeau L. Detection of ras point mutations by polymerase chain reaction using mutation-specific, inosine-containing oligonucleotide primers. Biochem Biophys Res Commun. 1989 Apr 28;160(2):441–447. doi: 10.1016/0006-291x(89)92452-2. [DOI] [PubMed] [Google Scholar]
  3. Grayston J. T., Kuo C. C., Campbell L. A., Benditt E. P. Chlamydia pneumoniae, strain TWAR and atherosclerosis. Eur Heart J. 1993 Dec;14 (Suppl K):66–71. [PubMed] [Google Scholar]
  4. Jin L., Nei M. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol. 1990 Jan;7(1):82–102. doi: 10.1093/oxfordjournals.molbev.a040588. [DOI] [PubMed] [Google Scholar]
  5. Kaltenboeck B., Kousoulas K. G., Storz J. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. J Bacteriol. 1993 Jan;175(2):487–502. doi: 10.1128/jb.175.2.487-502.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaltenboeck B., Kousoulas K. G., Storz J. Two-step polymerase chain reactions and restriction endonuclease analyses detect and differentiate ompA DNA of Chlamydia spp. J Clin Microbiol. 1992 May;30(5):1098–1104. doi: 10.1128/jcm.30.5.1098-1104.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuo C. C., Grayston J. T., Campbell L. A., Goo Y. A., Wissler R. W., Benditt E. P. Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old). Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6911–6914. doi: 10.1073/pnas.92.15.6911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  9. Li H., Cui X., Arnheim N. Direct electrophoretic detection of the allelic state of single DNA molecules in human sperm by using the polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4580–4584. doi: 10.1073/pnas.87.12.4580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Longo M. C., Berninger M. S., Hartley J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990 Sep 1;93(1):125–128. doi: 10.1016/0378-1119(90)90145-h. [DOI] [PubMed] [Google Scholar]
  11. Lusher M., Storey C. C., Richmond S. J. Plasmid diversity within the genus Chlamydia. J Gen Microbiol. 1989 May;135(5):1145–1151. doi: 10.1099/00221287-135-5-1145. [DOI] [PubMed] [Google Scholar]
  12. Mahony J. B., Luinstra K. E., Sellors J. W., Chernesky M. A. Comparison of plasmid- and chromosome-based polymerase chain reaction assays for detecting Chlamydia trachomatis nucleic acids. J Clin Microbiol. 1993 Jul;31(7):1753–1758. doi: 10.1128/jcm.31.7.1753-1758.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Muhlestein J. B., Hammond E. H., Carlquist J. F., Radicke E., Thomson M. J., Karagounis L. A., Woods M. L., Anderson J. L. Increased incidence of Chlamydia species within the coronary arteries of patients with symptomatic atherosclerotic versus other forms of cardiovascular disease. J Am Coll Cardiol. 1996 Jun;27(7):1555–1561. doi: 10.1016/0735-1097(96)00055-1. [DOI] [PubMed] [Google Scholar]
  14. Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. doi: 10.1093/nar/17.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rumpianesi F., La Placa M., Jr, D'Antuono A., Negosanti M., Pavan G. Assessment of the "Amplicor" PCR test in the diagnosis of Chlamydia trachomatis infection. New Microbiol. 1993 Jul;16(3):293–295. [PubMed] [Google Scholar]
  16. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  17. Stephens R. S., Wagar E. A., Schoolnik G. K. High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. J Exp Med. 1988 Mar 1;167(3):817–831. doi: 10.1084/jem.167.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tjiam K. H., van Heijst B. Y., van Zuuren A., Wagenvoort J. H., van Joost T., Stolz E., Michel M. F. Evaluation of an enzyme immunoassay for the diagnosis of chlamydial infections in urogenital specimens. J Clin Microbiol. 1986 Apr;23(4):752–754. doi: 10.1128/jcm.23.4.752-754.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zhang Y. X., Morrison S. G., Caldwell H. D., Baehr W. Cloning and sequence analysis of the major outer membrane protein genes of two Chlamydia psittaci strains. Infect Immun. 1989 May;57(5):1621–1625. doi: 10.1128/iai.57.5.1621-1625.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES