Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Jul;35(7):1883–1884. doi: 10.1128/jcm.35.7.1883-1884.1997

Improvement of growth of Chlamydia pneumoniae on HEp-2 cells by pretreatment with polyethylene glycol in combination with additional centrifugation and extension of culture time.

J H Tjhie 1, R Roosendaal 1, D M MacLaren 1, C M Vandenbroucke-Grauls 1
PMCID: PMC229863  PMID: 9196215

Abstract

The following adaptations led to improved growth of Chlamydia pneumoniae on HEp-2 cells compared to that by the standard method: monolayer preincubation with 7% polyethylene glycol (PEG), extension of incubation time to 7 days, and extension of incubation to 7 days in combination with centrifugation on days 3, 4, and 5. These adaptations resulted in approximate increases in numbers of inclusion-forming units (IFU) of 2-, 5-, and 69-fold, respectively. A combination of preincubation with PEG, prolonged incubation, and centrifugation on days 3, 4, and 5 increased the numbers of IFU >300-fold. This is therefore recommended as the optimal method for culturing C. pneumoniae.

Full Text

The Full Text of this article is available as a PDF (97.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold K., Herrmann A., Pratsch L., Gawrisch K. The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim Biophys Acta. 1985 May 28;815(3):515–518. doi: 10.1016/0005-2736(85)90381-5. [DOI] [PubMed] [Google Scholar]
  2. Cles L. D., Stamm W. E. Use of HL cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1990 May;28(5):938–940. doi: 10.1128/jcm.28.5.938-940.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gibson J. P., Egerer R. M., Wiedbrauk D. L. Improved isolation of Chlamydia trachomatis from a low-prevalence population by using polyethylene glycol. J Clin Microbiol. 1993 Feb;31(2):292–295. doi: 10.1128/jcm.31.2.292-295.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kuo C. C., Grayston J. T. A sensitive cell line, HL cells, for isolation and propagation of Chlamydia pneumoniae strain TWAR. J Infect Dis. 1990 Sep;162(3):755–758. doi: 10.1093/infdis/162.3.755. [DOI] [PubMed] [Google Scholar]
  5. Maass M., Harig U. Evaluation of culture conditions used for isolation of Chlamydia pneumoniae. Am J Clin Pathol. 1995 Feb;103(2):141–148. doi: 10.1093/ajcp/103.2.141. [DOI] [PubMed] [Google Scholar]
  6. Roblin P. M., Dumornay W., Hammerschlag M. R. Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol. 1992 Aug;30(8):1968–1971. doi: 10.1128/jcm.30.8.1968-1971.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Wong K. H., Skelton S. K., Chan Y. K. Efficient culture of Chlamydia pneumoniae with cell lines derived from the human respiratory tract. J Clin Microbiol. 1992 Jul;30(7):1625–1630. doi: 10.1128/jcm.30.7.1625-1630.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES