Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Sep;35(9):2262–2265. doi: 10.1128/jcm.35.9.2262-2265.1997

Comparison of the hybrid capture tube test and PCR for detection of human papillomavirus DNA in cervical specimens.

J U Cope 1, A Hildesheim 1, M H Schiffman 1, M M Manos 1, A T Lörincz 1, R D Burk 1, A G Glass 1, C Greer 1, J Buckland 1, K Helgesen 1, D R Scott 1, M E Sherman 1, R J Kurman 1, K L Liaw 1
PMCID: PMC229950  PMID: 9276398

Abstract

The strong association of human papillomavirus (HPV) and cervical cancer makes it important to study HPV detection methods that may play a role in cervical cancer screening. We compared two DNA methods that are commonly used for HPV research in the United States: the MY09/MY11 L1 consensus primer PCR-based test and the first-generation Hybrid Capture tube method (HCT). Laboratory assays by each method were performed with 596 cervicovaginal specimens collected from participants in a large cohort study conducted in Portland, Oreg. Included were 499 specimens from women whose cytology was normal and 97 specimens from women with squamous intraepithelial lesions (SILs). The overall HPV DNA positivity for known types was 22.5% by PCR compared to 13.6% by HCT. When the analysis was restricted to the 14 HPV types detectable by both methods, the sensitivity of HCT, with PCR used as the standard for HPV status, was higher for specimens from women with concurrent SILs (81.0%) than for specimens from women with normal cytology (46.7%). Among specimens testing positive by both methods, 97.2% of the time the two methods agreed on whether specimens were positive for cancer-associated HPV types. Both of these HPV test methods provide information that supplements the information provided by the Pap smear. The PCR method has higher analytic sensitivity than HCT in detecting HPV, but HCT may be helpful in identifying women with concurrent SILs.

Full Text

The Full Text of this article is available as a PDF (101.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer H. M., Ting Y., Greer C. E., Chambers J. C., Tashiro C. J., Chimera J., Reingold A., Manos M. M. Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA. 1991 Jan 23;265(4):472–477. [PubMed] [Google Scholar]
  2. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  3. Bosch F. X., Muñoz N., de Sanjosé S., Izarzugaza I., Gili M., Viladiu P., Tormo M. J., Moreo P., Ascunce N., Gonzalez L. C. Risk factors for cervical cancer in Colombia and Spain. Int J Cancer. 1992 Nov 11;52(5):750–758. doi: 10.1002/ijc.2910520514. [DOI] [PubMed] [Google Scholar]
  4. Cox J. T., Lorincz A. T., Schiffman M. H., Sherman M. E., Cullen A., Kurman R. J. Human papillomavirus testing by hybrid capture appears to be useful in triaging women with a cytologic diagnosis of atypical squamous cells of undetermined significance. Am J Obstet Gynecol. 1995 Mar;172(3):946–954. doi: 10.1016/0002-9378(95)90026-8. [DOI] [PubMed] [Google Scholar]
  5. Cuzick J., Szarewski A., Terry G., Ho L., Hanby A., Maddox P., Anderson M., Kocjan G., Steele S. T., Guillebaud J. Human papillomavirus testing in primary cervical screening. Lancet. 1995 Jun 17;345(8964):1533–1536. doi: 10.1016/s0140-6736(95)91086-7. [DOI] [PubMed] [Google Scholar]
  6. Hildesheim A., Schiffman M. H., Gravitt P. E., Glass A. G., Greer C. E., Zhang T., Scott D. R., Rush B. B., Lawler P., Sherman M. E. Persistence of type-specific human papillomavirus infection among cytologically normal women. J Infect Dis. 1994 Feb;169(2):235–240. doi: 10.1093/infdis/169.2.235. [DOI] [PubMed] [Google Scholar]
  7. Hsing A. W., Burk R. D., Liaw K. L., Chen C. J., Zhang T., Schiffman M., Greer C. E., You S. L., Hsieh C. Y., Huang T. W. Interlaboratory agreement in a polymerase chain reaction-based human papillomavirus DNA assay. Cancer Epidemiol Biomarkers Prev. 1996 Jun;5(6):483–484. [PubMed] [Google Scholar]
  8. Koutsky L. A., Holmes K. K., Critchlow C. W., Stevens C. E., Paavonen J., Beckmann A. M., DeRouen T. A., Galloway D. A., Vernon D., Kiviat N. B. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med. 1992 Oct 29;327(18):1272–1278. doi: 10.1056/NEJM199210293271804. [DOI] [PubMed] [Google Scholar]
  9. Kurman R. J., Henson D. E., Herbst A. L., Noller K. L., Schiffman M. H. Interim guidelines for management of abnormal cervical cytology. The 1992 National Cancer Institute Workshop. JAMA. 1994 Jun 15;271(23):1866–1869. [PubMed] [Google Scholar]
  10. Kuypers J. M., Critchlow C. W., Gravitt P. E., Vernon D. A., Sayer J. B., Manos M. M., Kiviat N. B. Comparison of dot filter hybridization, Southern transfer hybridization, and polymerase chain reaction amplification for diagnosis of anal human papillomavirus infection. J Clin Microbiol. 1993 Apr;31(4):1003–1006. doi: 10.1128/jcm.31.4.1003-1006.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Muñoz N., Bosch F. X., de Sanjosé S., Tafur L., Izarzugaza I., Gili M., Viladiu P., Navarro C., Martos C., Ascunce N. The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain. Int J Cancer. 1992 Nov 11;52(5):743–749. doi: 10.1002/ijc.2910520513. [DOI] [PubMed] [Google Scholar]
  12. Parkin D. M., Pisani P., Ferlay J. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer. 1993 Jun 19;54(4):594–606. doi: 10.1002/ijc.2910540413. [DOI] [PubMed] [Google Scholar]
  13. Ritter D. B., Kadish A. S., Vermund S. H., Romney S. L., Villari D., Burk R. D. Detection of human papillomavirus deoxyribonucleic acid in exfoliated cervicovaginal cells as a predictor of cervical neoplasia in a high-risk population. Am J Obstet Gynecol. 1988 Dec;159(6):1517–1525. doi: 10.1016/0002-9378(88)90587-x. [DOI] [PubMed] [Google Scholar]
  14. Schiffman M. H., Bauer H. M., Hoover R. N., Glass A. G., Cadell D. M., Rush B. B., Scott D. R., Sherman M. E., Kurman R. J., Wacholder S. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst. 1993 Jun 16;85(12):958–964. doi: 10.1093/jnci/85.12.958. [DOI] [PubMed] [Google Scholar]
  15. Schiffman M. H., Bauer H. M., Lorincz A. T., Manos M. M., Byrne J. C., Glass A. G., Cadell D. M., Howley P. M. Comparison of Southern blot hybridization and polymerase chain reaction methods for the detection of human papillomavirus DNA. J Clin Microbiol. 1991 Mar;29(3):573–577. doi: 10.1128/jcm.29.3.573-577.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schiffman M. H., Kiviat N. B., Burk R. D., Shah K. V., Daniel R. W., Lewis R., Kuypers J., Manos M. M., Scott D. R., Sherman M. E. Accuracy and interlaboratory reliability of human papillomavirus DNA testing by hybrid capture. J Clin Microbiol. 1995 Mar;33(3):545–550. doi: 10.1128/jcm.33.3.545-550.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schiffman M. H. Recent progress in defining the epidemiology of human papillomavirus infection and cervical neoplasia. J Natl Cancer Inst. 1992 Mar 18;84(6):394–398. doi: 10.1093/jnci/84.6.394. [DOI] [PubMed] [Google Scholar]
  18. Schiffman M. H. Validation of hybridization assays: correlation of filter in situ, dot blot and PCR with Southern blot. IARC Sci Publ. 1992;(119):169–179. [PubMed] [Google Scholar]
  19. Sherman M. E., Schiffman M. H., Lorincz A. T., Manos M. M., Scott D. R., Kuman R. J., Kiviat N. B., Stoler M., Glass A. G., Rush B. B. Toward objective quality assurance in cervical cytopathology. Correlation of cytopathologic diagnoses with detection of high-risk human papillomavirus types. Am J Clin Pathol. 1994 Aug;102(2):182–187. doi: 10.1093/ajcp/102.2.182. [DOI] [PubMed] [Google Scholar]
  20. Smits H. L., Bollen L. J., Tjong-A-Hung S. P., Vonk J., Van Der Velden J., Ten Kate F. J., Kaan J. A., Mol B. W., Ter Schegget J. Intermethod variation in detection of human papillomavirus DNA in cervical smears. J Clin Microbiol. 1995 Oct;33(10):2631–2636. doi: 10.1128/jcm.33.10.2631-2636.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vermund S. H., Schiffman M. H., Goldberg G. L., Ritter D. B., Weltman A., Burk R. D. Molecular diagnosis of genital human papillomavirus infection: comparison of two methods used to collect exfoliated cervical cells. Am J Obstet Gynecol. 1989 Feb;160(2):304–308. doi: 10.1016/0002-9378(89)90430-4. [DOI] [PubMed] [Google Scholar]
  22. Wideroff L., Schiffman M. H., Nonnenmacher B., Hubbert N., Kirnbauer R., Greer C. E., Lowy D., Lorincz A. T., Manos M. M., Glass A. G. Evaluation of seroreactivity to human papillomavirus type 16 virus-like particles in an incident case-control study of cervical neoplasia. J Infect Dis. 1995 Dec;172(6):1425–1430. doi: 10.1093/infdis/172.6.1425. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES