Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Sep;35(9):2320–2324. doi: 10.1128/jcm.35.9.2320-2324.1997

Rapid flow cytometric susceptibility testing of Candida albicans.

R Ramani 1, A Ramani 1, S J Wong 1
PMCID: PMC229962  PMID: 9276410

Abstract

A rapid flow cytometric assay for in vitro antifungal drug susceptibility testing was developed by adapting the proposed reference method for broth macrodilution testing of yeasts. Membrane permeability changes caused by the antifungal agent were measured by flow cytometry using propidium iodide, a nucleic acid-binding fluorochrome largely excluded by the intact cell membrane. We determined the in vitro susceptibility of 31 Candida albicans isolates and two quality control strains (Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258) to amphotericin B and fluconazole. Amphotericin B MICs ranged from 0.03 to 2.0 microg/ml, while fluconazole MICs ranged from 0.125 to 128 microg/ml. This method results in clear-cut endpoints that were reproducible. Four-hour incubation was required for fluconazole, whereas a 2-h incubation was sufficient for amphotericin B to provide MICs comparable to the reference macrodilution method developed by the National Committee for Clinical Laboratory Standards Subcommittee on Antifungal Susceptibility Tests. Results of these studies show that flow cytometry provides a rapid and sensitive in vitro method for antifungal susceptibility testing of C. albicans.

Full Text

The Full Text of this article is available as a PDF (399.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bjerknes R., Bassøe C. F., Sjursen H., Laerum O. D., Solberg C. O. Flow cytometry for the study of phagocyte functions. Rev Infect Dis. 1989 Jan-Feb;11(1):16–33. doi: 10.1093/clinids/11.1.16. [DOI] [PubMed] [Google Scholar]
  2. Donnelly C. W., Baigent G. J. Method for flow cytometric detection of Listeria monocytogenes in milk. Appl Environ Microbiol. 1986 Oct;52(4):689–695. doi: 10.1128/aem.52.4.689-695.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jahn B., Martin E., Stueben A., Bhakdi S. Susceptibility testing of Candida albicans and Aspergillus species by a simple microtiter menadione-augmented 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. J Clin Microbiol. 1995 Mar;33(3):661–667. doi: 10.1128/jcm.33.3.661-667.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lehrer R. I., Cline M. J. Interaction of Candida albicans with human leukocytes and serum. J Bacteriol. 1969 Jun;98(3):996–1004. doi: 10.1128/jb.98.3.996-1004.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Martin E., Schlasius U., Bhakdi S. Flow cytometric assay for estimating fungicidal activity of amphotericin B in human serum. Med Microbiol Immunol. 1992;181(3):117–126. doi: 10.1007/BF00202051. [DOI] [PubMed] [Google Scholar]
  6. O'Gorman M. R., Hopfer R. L. Amphotericin B susceptibility testing of Candida species by flow cytometry. Cytometry. 1991;12(8):743–747. doi: 10.1002/cyto.990120808. [DOI] [PubMed] [Google Scholar]
  7. Ordóez J. V., Wehman N. M. Amphotericin B susceptibility of Candida species assessed by rapid flow cytometric membrane potential assay. Cytometry. 1995 Jun 15;22(2):154–157. doi: 10.1002/cyto.990220213. [DOI] [PubMed] [Google Scholar]
  8. Pfaller M. A., Grant C., Morthland V., Rhine-Chalberg J. Comparative evaluation of alternative methods for broth dilution susceptibility testing of fluconazole against Candida albicans. J Clin Microbiol. 1994 Feb;32(2):506–509. doi: 10.1128/jcm.32.2.506-509.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pfaller M. A., Messer S. A., Coffmann S. Comparison of visual and spectrophotometric methods of MIC endpoint determinations by using broth microdilution methods to test five antifungal agents, including the new triazole D0870. J Clin Microbiol. 1995 May;33(5):1094–1097. doi: 10.1128/jcm.33.5.1094-1097.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pfaller M. A., Rinaldi M. G., Galgiani J. N., Bartlett M. S., Body B. A., Espinel-Ingroff A., Fromtling R. A., Hall G. S., Hughes C. E., Odds F. C. Collaborative investigation of variables in susceptibility testing of yeasts. Antimicrob Agents Chemother. 1990 Sep;34(9):1648–1654. doi: 10.1128/aac.34.9.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pore R. S. Antibiotic susceptibility testing by flow cytometry. J Antimicrob Chemother. 1994 Nov;34(5):613–627. doi: 10.1093/jac/34.5.613. [DOI] [PubMed] [Google Scholar]
  12. Rex J. H., Pfaller M. A., Rinaldi M. G., Polak A., Galgiani J. N. Antifungal susceptibility testing. Clin Microbiol Rev. 1993 Oct;6(4):367–381. doi: 10.1128/cmr.6.4.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Steen H. B., Boye E., Skarstad K., Bloom B., Godal T., Mustafa S. Applications of flow cytometry on bacteria: cell cycle kinetics, drug effects, and quantitation of antibody binding. Cytometry. 1982 Jan;2(4):249–257. doi: 10.1002/cyto.990020409. [DOI] [PubMed] [Google Scholar]
  14. Wenisch C., Linnau K. F., Parschalk B., Zedtwitz-Liebenstein K., Georgopoulos A. Rapid susceptibility testing of fungi by flow cytometry using vital staining. J Clin Microbiol. 1997 Jan;35(1):5–10. doi: 10.1128/jcm.35.1.5-10.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES