Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Sep;35(9):2325–2330. doi: 10.1128/jcm.35.9.2325-2330.1997

Detection of vancomycin-resistant enterococci in fecal samples by PCR.

S Satake 1, N Clark 1, D Rimland 1, F S Nolte 1, F C Tenover 1
PMCID: PMC229963  PMID: 9276411

Abstract

Surveillance cultures for vancomycin-resistant enterococci (VRE) are time-consuming and expensive for the laboratory to perform. Therefore, we investigated the use of PCR as an alternative method of detecting and identifying VRE directly in fecal samples. PCR primers directed to vanA, vanB, vanC1, vanC2, and enterococcal ligase genes were used to detect and identify VRE in fecal material obtained by rectal or perirectal swabbing. Although PCR-inhibitory substances were present in DNA prepared directly from the swabs, the inhibitory substances could be reduced by processing the nucleic acid with two commercially available DNA preparation columns. Fecal material from 333 swabs was cultured on several selective agar media before and after broth enrichment. DNA was extracted from the fecal material and was analyzed by PCR. By using all four primer sets, only 59 (67.8%) of the samples were positive for vanA. However, after retesting the negative samples with only the vanA primer set, 77 (88.5%) of 87 specimens that were culture positive for Enterococcus faecium containing vanA were positive by PCR. One specimen was PCR positive for the vanA gene but culture negative for enterococci. The specificity of the vanA assay was 99.6%. PCR analysis of enrichment broth samples with all four primers sets after 15 to 18 h of incubation detected 74 (85.1%) of the 87 culture-positive specimens. The specificity of the vanA assay after the enrichment step was 100%. No vanB-containing enterococci were recovered by culture. Since 16 samples can be tested by PCR in 4 h (including electrophoresis), identification of VRE is possible within 8 h of specimen submission at a cost of approximately $10.12/assay. Thus, PCR may be a cost-effective alternative to culture for surveillance of VRE in some hospitals.

Full Text

The Full Text of this article is available as a PDF (334.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur M., Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 1993 Aug;37(8):1563–1571. doi: 10.1128/aac.37.8.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clark N. C., Cooksey R. C., Hill B. C., Swenson J. M., Tenover F. C. Characterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob Agents Chemother. 1993 Nov;37(11):2311–2317. doi: 10.1128/aac.37.11.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dutka-Malen S., Blaimont B., Wauters G., Courvalin P. Emergence of high-level resistance to glycopeptides in Enterococcus gallinarum and Enterococcus casseliflavus. Antimicrob Agents Chemother. 1994 Jul;38(7):1675–1677. doi: 10.1128/aac.38.7.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dutka-Malen S., Evers S., Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995 Jan;33(1):24–27. doi: 10.1128/jcm.33.1.24-27.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edberg S. C., Hardalo C. J., Kontnick C., Campbell S. Rapid detection of vancomycin-resistant enterococci. J Clin Microbiol. 1994 Sep;32(9):2182–2184. doi: 10.1128/jcm.32.9.2182-2184.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Emori T. G., Gaynes R. P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev. 1993 Oct;6(4):428–442. doi: 10.1128/cmr.6.4.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Facklam R., Elliott J. A. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev. 1995 Oct;8(4):479–495. doi: 10.1128/cmr.8.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Handwerger S., Raucher B., Altarac D., Monka J., Marchione S., Singh K. V., Murray B. E., Wolff J., Walters B. Nosocomial outbreak due to Enterococcus faecium highly resistant to vancomycin, penicillin, and gentamicin. Clin Infect Dis. 1993 Jun;16(6):750–755. doi: 10.1093/clind/16.6.750. [DOI] [PubMed] [Google Scholar]
  9. Jett B., Free L., Sahm D. F. Factors influencing the vitek gram-positive susceptibility system's detection of vanB-encoded vancomycin resistance among enterococci. J Clin Microbiol. 1996 Mar;34(3):701–706. doi: 10.1128/jcm.34.3.701-706.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson S. R., Martin D. H., Cammarata C., Morse S. A. Alterations in sample preparation increase sensitivity of PCR assay for diagnosis of chancroid. J Clin Microbiol. 1995 Apr;33(4):1036–1038. doi: 10.1128/jcm.33.4.1036-1038.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaplan A. H., Gilligan P. H., Facklam R. R. Recovery of resistant enterococci during vancomycin prophylaxis. J Clin Microbiol. 1988 Jun;26(6):1216–1218. doi: 10.1128/jcm.26.6.1216-1218.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kato N., Ou C. Y., Kato H., Bartley S. L., Luo C. C., Killgore G. E., Ueno K. Detection of toxigenic Clostridium difficile in stool specimens by the polymerase chain reaction. J Infect Dis. 1993 Feb;167(2):455–458. doi: 10.1093/infdis/167.2.455. [DOI] [PubMed] [Google Scholar]
  13. Landman D., Quale J. M., Oydna E., Willey B., Ditore V., Zaman M., Patel K., Saurina G., Huang W. Comparison of five selective media for identifying fecal carriage of vancomycin-resistant enterococci. J Clin Microbiol. 1996 Mar;34(3):751–752. doi: 10.1128/jcm.34.3.751-752.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leclercq R., Dutka-Malen S., Duval J., Courvalin P. Vancomycin resistance gene vanC is specific to Enterococcus gallinarum. Antimicrob Agents Chemother. 1992 Sep;36(9):2005–2008. doi: 10.1128/aac.36.9.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Livornese L. L., Jr, Dias S., Samel C., Romanowski B., Taylor S., May P., Pitsakis P., Woods G., Kaye D., Levison M. E. Hospital-acquired infection with vancomycin-resistant Enterococcus faecium transmitted by electronic thermometers. Ann Intern Med. 1992 Jul 15;117(2):112–116. doi: 10.7326/0003-4819-117-2-112. [DOI] [PubMed] [Google Scholar]
  16. Montecalvo M. A., Horowitz H., Gedris C., Carbonaro C., Tenover F. C., Issah A., Cook P., Wormser G. P. Outbreak of vancomycin-, ampicillin-, and aminoglycoside-resistant Enterococcus faecium bacteremia in an adult oncology unit. Antimicrob Agents Chemother. 1994 Jun;38(6):1363–1367. doi: 10.1128/aac.38.6.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morris J. G., Jr, Shay D. K., Hebden J. N., McCarter R. J., Jr, Perdue B. E., Jarvis W., Johnson J. A., Dowling T. C., Polish L. B., Schwalbe R. S. Enterococci resistant to multiple antimicrobial agents, including vancomycin. Establishment of endemicity in a university medical center. Ann Intern Med. 1995 Aug 15;123(4):250–259. doi: 10.7326/0003-4819-123-4-199508150-00002. [DOI] [PubMed] [Google Scholar]
  18. Navarro F., Courvalin P. Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob Agents Chemother. 1994 Aug;38(8):1788–1793. doi: 10.1128/aac.38.8.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Quintiliani R., Jr, Courvalin P. Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome. FEMS Microbiol Lett. 1994 Jun 15;119(3):359–363. doi: 10.1111/j.1574-6968.1994.tb06913.x. [DOI] [PubMed] [Google Scholar]
  20. Rubin L. G., Tucci V., Cercenado E., Eliopoulos G., Isenberg H. D. Vancomycin-resistant Enterococcus faecium in hospitalized children. Infect Control Hosp Epidemiol. 1992 Dec;13(12):700–705. doi: 10.1086/648342. [DOI] [PubMed] [Google Scholar]
  21. Sahm D. F., Olsen L. In vitro detection of enterococcal vancomycin resistance. Antimicrob Agents Chemother. 1990 Sep;34(9):1846–1848. doi: 10.1128/aac.34.9.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swenson J. M., Clark N. C., Ferraro M. J., Sahm D. F., Doern G., Pfaller M. A., Reller L. B., Weinstein M. P., Zabransky R. J., Tenover F. C. Development of a standardized screening method for detection of vancomycin-resistant enterococci. J Clin Microbiol. 1994 Jul;32(7):1700–1704. doi: 10.1128/jcm.32.7.1700-1704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tenover F. C., Tokars J., Swenson J., Paul S., Spitalny K., Jarvis W. Ability of clinical laboratories to detect antimicrobial agent-resistant enterococci. J Clin Microbiol. 1993 Jul;31(7):1695–1699. doi: 10.1128/jcm.31.7.1695-1699.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van Horn K. G., Gedris C. A., Rodney K. M. Selective isolation of vancomycin-resistant enterococci. J Clin Microbiol. 1996 Apr;34(4):924–927. doi: 10.1128/jcm.34.4.924-927.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES