Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Sep;35(9):2337–2341. doi: 10.1128/jcm.35.9.2337-2341.1997

Identification of clinically relevant viridans group streptococci to the species level by PCR.

F Garnier 1, G Gerbaud 1, P Courvalin 1, M Galimand 1
PMCID: PMC229965  PMID: 9276413

Abstract

A PCR assay that allows identification of clinically relevant viridans group streptococci (Streptococcus gordonii, S. mitis, S. mutans, S. oralis, S. salivarius, and S. sanguis) to the species level and identification of milleri group streptococci (S. anginosus, S. constellatus, and S. intermedius) to the group level was developed. This assay was based on specific amplification of internal fragments of genes encoding D-alanine:D-alanine ligases which are species specific and ubiquitous in prokaryotes possessing peptidoglycan. The specificity of this assay was tested on 9 reference strains and 91 characterized clinical isolates. This assay offers a specific and rapid alternative to phenotypic or DNA-DNA hybridization methods for identification of clinically relevant viridans group streptococci.

Full Text

The Full Text of this article is available as a PDF (666.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beighton D., Carr A. D., Oppenheim B. A. Identification of viridans streptococci associated with bacteraemia in neutropenic cancer patients. J Med Microbiol. 1994 Mar;40(3):202–204. doi: 10.1099/00222615-40-3-202. [DOI] [PubMed] [Google Scholar]
  2. Beighton D., Hardie J. M., Whiley R. A. A scheme for the identification of viridans streptococci. J Med Microbiol. 1991 Dec;35(6):367–372. doi: 10.1099/00222615-35-6-367. [DOI] [PubMed] [Google Scholar]
  3. Bochud P. Y., Eggiman P., Calandra T., Van Melle G., Saghafi L., Francioli P. Bacteremia due to viridans streptococcus in neutropenic patients with cancer: clinical spectrum and risk factors. Clin Infect Dis. 1994 Jan;18(1):25–31. doi: 10.1093/clinids/18.1.25. [DOI] [PubMed] [Google Scholar]
  4. Coykendall A. L. Classification and identification of the viridans streptococci. Clin Microbiol Rev. 1989 Jul;2(3):315–328. doi: 10.1128/cmr.2.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Douglas C. W., Heath J., Hampton K. K., Preston F. E. Identity of viridans streptococci isolated from cases of infective endocarditis. J Med Microbiol. 1993 Sep;39(3):179–182. doi: 10.1099/00222615-39-3-179. [DOI] [PubMed] [Google Scholar]
  7. Dutka-Malen S., Evers S., Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995 Jan;33(1):24–27. doi: 10.1128/jcm.33.1.24-27.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dutka-Malen S., Molinas C., Arthur M., Courvalin P. Sequence of the vanC gene of Enterococcus gallinarum BM4174 encoding a D-alanine:D-alanine ligase-related protein necessary for vancomycin resistance. Gene. 1992 Mar 1;112(1):53–58. doi: 10.1016/0378-1119(92)90302-6. [DOI] [PubMed] [Google Scholar]
  9. Dutka-Malen S., Molinas C., Arthur M., Courvalin P. The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Mol Gen Genet. 1990 Dec;224(3):364–372. doi: 10.1007/BF00262430. [DOI] [PubMed] [Google Scholar]
  10. Facklam R. R. Physiological differentiation of viridans streptococci. J Clin Microbiol. 1977 Feb;5(2):184–201. doi: 10.1128/jcm.5.2.184-201.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frankel G., Giron J. A., Valmassoi J., Schoolnik G. K. Multi-gene amplification: simultaneous detection of three virulence genes in diarrhoeal stool. Mol Microbiol. 1989 Dec;3(12):1729–1734. doi: 10.1111/j.1365-2958.1989.tb00158.x. [DOI] [PubMed] [Google Scholar]
  12. Gossling J. Occurrence and pathogenicity of the Streptococcus milleri group. Rev Infect Dis. 1988 Mar-Apr;10(2):257–285. doi: 10.1093/clinids/10.2.257. [DOI] [PubMed] [Google Scholar]
  13. Hinnebusch C. J., Nikolai D. M., Bruckner D. A. Comparison of API Rapid Strep, Baxter MicroScan Rapid Pos ID Panel, BBL Minitek Differential Identification System, IDS RapID STR System, and Vitek GPI to conventional biochemical tests for identification of viridans streptococci. Am J Clin Pathol. 1991 Oct;96(4):459–463. doi: 10.1093/ajcp/96.4.459. [DOI] [PubMed] [Google Scholar]
  14. Kawamura Y., Hou X. G., Sultana F., Miura H., Ezaki T. Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol. 1995 Apr;45(2):406–408. doi: 10.1099/00207713-45-2-406. [DOI] [PubMed] [Google Scholar]
  15. Kikuchi K., Enari T., Totsuka K., Shimizu K. Comparison of phenotypic characteristics, DNA-DNA hybridization results, and results with a commercial rapid biochemical and enzymatic reaction system for identification of viridans group streptococci. J Clin Microbiol. 1995 May;33(5):1215–1222. doi: 10.1128/jcm.33.5.1215-1222.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  17. Oyofo B. A., Thornton S. A., Burr D. H., Trust T. J., Pavlovskis O. R., Guerry P. Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain reaction. J Clin Microbiol. 1992 Oct;30(10):2613–2619. doi: 10.1128/jcm.30.10.2613-2619.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robinson A. C., Kenan D. J., Sweeney J., Donachie W. D. Further evidence for overlapping transcriptional units in an Escherichia coli cell envelope-cell division gene cluster: DNA sequence and transcriptional organization of the ddl ftsQ region. J Bacteriol. 1986 Sep;167(3):809–817. doi: 10.1128/jb.167.3.809-817.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosa P. A., Schwan T. G. A specific and sensitive assay for the Lyme disease spirochete Borrelia burgdorferi using the polymerase chain reaction. J Infect Dis. 1989 Dec;160(6):1018–1029. doi: 10.1093/infdis/160.6.1018. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tardif G., Sulavik M. C., Jones G. W., Clewell D. B. Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect Immun. 1989 Dec;57(12):3945–3948. doi: 10.1128/iai.57.12.3945-3948.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walsh C. T. Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem. 1989 Feb 15;264(5):2393–2396. [PubMed] [Google Scholar]
  23. Zawadzke L. E., Bugg T. D., Walsh C. T. Existence of two D-alanine:D-alanine ligases in Escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry. 1991 Feb 12;30(6):1673–1682. doi: 10.1021/bi00220a033. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES