Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Sep;35(9):2365–2369. doi: 10.1128/jcm.35.9.2365-2369.1997

Identification of clinical isolates of indole-positive Klebsiella spp., including Klebsiella planticola, and a genetic and molecular analysis of their beta-lactamases.

Y Liu 1, B J Mee 1, L Mulgrave 1
PMCID: PMC229969  PMID: 9276417

Abstract

In a collection of 43 indole-positive Klebsiella clinical isolates, which were initially identified as Klebsiella oxytoca, there were 18 isolates which exhibited a pattern characteristic of extended-spectrum beta-lactamase (ESBL) resistance. This study aimed to confirm their identity by biochemical tests and by PCR and to determine the genetic basis for their resistance to the beta-lactams and broad-spectrum cephalosporins. Chromosomal beta-lactamase genes were analyzed by PCR, and plasmid-mediated beta-lactamase genes were analyzed by conjugation and transformation. There were 39 isolates which grew on melezitose but failed to grow on 3-hydroxybutyrate, confirming them as K. oxytoca. PCR analysis of their beta-lactamase genes divided these isolates into two groups, the bla(OXY-1) group and the bla(OXY-2) group. Each group had beta-lactamases with different isoelectric points; the bla(OXY-1) group had beta-lactamases with isoelectric points at 7.2, 7.8, 8.2, and 8.8, and the more common bla(OXY-2) group had beta-lactamases with pIs at 5.2, 5.4 (TEM-1), 5.7, 5.9, 6.4, and 6.8. A pI of 5.2 was the most frequently detected and accounted for 59% of all the bla(OXY-2) beta-lactamases. Hyperproduction of clavulanate-inhibited chromosomal beta-lactamases was detected in 17 K. oxytoca isolates, resulting in an ESBL phenotype. K. oxytoca isolates having a plasmid-mediated genetic basis for their ESBL phenotype were not found, confirming that, in K. oxytoca, plasmids are rarely involved in conferring resistance to the newer cephalosporins. Four isolates proved to be isolates of K. planticola in which the beta-lactamase genes failed to react with the primers used in the PCR. One K. planticola isolate contained a transferable plasmid harboring the SHV-5 beta-lactamase gene and showed an ESBL phenotype, while the other non-ESBL K. planticola isolates contained chromosomal beta-lactamases with isoelectric points at 7.2, 7.7, and 7.9 plus 7.2.

Full Text

The Full Text of this article is available as a PDF (323.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa Y., Ohta M., Kido N., Mori M., Ito H., Komatsu T., Fujii Y., Kato N. Chromosomal beta-lactamase of Klebsiella oxytoca, a new class A enzyme that hydrolyzes broad-spectrum beta-lactam antibiotics. Antimicrob Agents Chemother. 1989 Jan;33(1):63–70. doi: 10.1128/aac.33.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Domenico P., Marx J. L., Schoch P. E., Cunha B. A. Rapid plasmid DNA isolation from mucoid gram-negative bacteria. J Clin Microbiol. 1992 Nov;30(11):2859–2863. doi: 10.1128/jcm.30.11.2859-2863.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fournier B., Lu C. Y., Lagrange P. H., Krishnamoorthy R., Philippon A. Point mutation in the pribnow box, the molecular basis of beta-lactamase overproduction in Klebsiella oxytoca. Antimicrob Agents Chemother. 1995 Jun;39(6):1365–1368. doi: 10.1128/aac.39.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fournier B., Roy P. H., Lagrange P. H., Philippon A. Chromosomal beta-lactamase genes of Klebsiella oxytoca are divided into two main groups, blaOXY-1 and blaOXY-2. Antimicrob Agents Chemother. 1996 Feb;40(2):454–459. doi: 10.1128/aac.40.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freney J., Gavini F., Alexandre H., Madier S., Izard D., Leclerc H., Fleurette J. Nosocomial infection and colonization by Klebsiella trevisanii. J Clin Microbiol. 1986 May;23(5):948–950. doi: 10.1128/jcm.23.5.948-950.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jalakas-Pörnull K., Dornbusch K., Kühn I., Ransjö U., Jonsson C., Broberger U. Characterization of beta-lactam-resistant Klebsiella oxytoca isolated in a neonatal intensive care unit. APMIS. 1991 Jun;99(6):530–536. [PubMed] [Google Scholar]
  8. Labia R., Fabre C., Masson J. M., Barthelemy M., Heitz M., Pitton J. S. Klebsiella pneumonia strains moderately resistant to ampicillin and carbenicillin: characterization of a new beta-lactamase. J Antimicrob Chemother. 1979 Jul;5(4):375–382. doi: 10.1093/jac/5.4.375. [DOI] [PubMed] [Google Scholar]
  9. Liu P. Y., Gur D., Hall L. M., Livermore D. M. Survey of the prevalence of beta-lactamases amongst 1000 gram-negative bacilli isolated consecutively at the Royal London Hospital. J Antimicrob Chemother. 1992 Oct;30(4):429–447. doi: 10.1093/jac/30.4.429. [DOI] [PubMed] [Google Scholar]
  10. Merrick M. J., Gibbins J. R., Postgate J. R. A rapid and efficient method for plasmid transformation of Klebsiella pneumoniae and Escherichia coli. J Gen Microbiol. 1987 Aug;133(8):2053–2057. doi: 10.1099/00221287-133-8-2053. [DOI] [PubMed] [Google Scholar]
  11. Monnet D., Freney J. Method for differentiating Klebsiella planticola and Klebsiella terrigena from other Klebsiella species. J Clin Microbiol. 1994 Apr;32(4):1121–1122. doi: 10.1128/jcm.32.4.1121-1122.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mori M., Ohta M., Agata N., Kido N., Arakawa Y., Ito H., Komatsu T., Kato N. Identification of species and capsular types of Klebsiella clinical isolates, with special reference to Klebsiella planticola. Microbiol Immunol. 1989;33(11):887–895. doi: 10.1111/j.1348-0421.1989.tb00976.x. [DOI] [PubMed] [Google Scholar]
  13. Mulgrave L., Attwood P. V. Characterization of an SHV-5 related extended broad-spectrum beta-lactamase in Enterobacteriaceae from Western Australia. Pathology. 1993 Jan;25(1):71–75. doi: 10.3109/00313029309068906. [DOI] [PubMed] [Google Scholar]
  14. Reig R., Roy C., Hermida M., Teruel D., Coira A. A survey of beta-lactamases from 618 isolates of Klebsiella spp. J Antimicrob Chemother. 1993 Jan;31(1):29–35. doi: 10.1093/jac/31.1.29. [DOI] [PubMed] [Google Scholar]
  15. Sanders C. C., Sanders W. E., Jr beta-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin Infect Dis. 1992 Nov;15(5):824–839. doi: 10.1093/clind/15.5.824. [DOI] [PubMed] [Google Scholar]
  16. Shannon K. P., King A., Phillips I., Nicolas M. H., Philippon A. Importance of organisms producing broad-spectrum SHV-group beta-lactamases into the United Kingdom. J Antimicrob Chemother. 1990 Mar;25(3):343–351. doi: 10.1093/jac/25.3.343. [DOI] [PubMed] [Google Scholar]
  17. Sykes R. B., Matthew M. The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1976 Jun;2(2):115–157. doi: 10.1093/jac/2.2.115. [DOI] [PubMed] [Google Scholar]
  18. Wu S. W., Dornbusch K., Norgren M., Kronvall G. Extended spectrum beta-lactamase from Klebsiella oxytoca, not belonging to the TEM or SHV family. J Antimicrob Chemother. 1992 Jul;30(1):3–16. doi: 10.1093/jac/30.1.3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES