Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Oct;35(10):2477–2481. doi: 10.1128/jcm.35.10.2477-2481.1997

Rapid and accurate identification of Staphylococcus species by tRNA intergenic spacer length polymorphism analysis.

N Maes 1, Y De Gheldre 1, R De Ryck 1, M Vaneechoutte 1, H Meugnier 1, J Etienne 1, M J Struelens 1
PMCID: PMC229995  PMID: 9316892

Abstract

PCR-amplified tRNA gene (tDNA) intergenic spacer length polymorphism (tDNA-ILP) was analyzed for its ability to identify to the species level type strains (n = 18) and clinical isolates (n = 163) of staphylococci. Amplified products obtained by PCR with outwardly directed consensus tDNA primers were separated by agarose and polyacrylamide gel electrophoreses. The results were compared with those obtained by biochemical identification and ribotyping. Each type strain presented a specific tDNA-ILP pattern. PCR with fluorescent primers allowed for the detection of labelled DNA fragments on polyacrylamide gels by using an automated laser fluorescence sequencer and provided enhanced pattern resolution in comparison with that by analysis on agarose gels. tDNA patterns indistinguishable from those of the type strains were produced by clinical isolates of all tested species except for some isolates of S. aureus (n = 3) and S. haemolyticus (n = 1), which showed variant patterns. Strains of S. saprophyticus and S. xylosus showed very closely related profiles, and S. cohnii subspecies were indistinguishable. The identities obtained by tDNA-ILP analysis agreed with those obtained by the biochemical method to the species level for 99% (162 of 163) of the strains tested and to the subspecies level for 96% (156 of 163) of the strains tested. These results indicate that fluorescence-labelled PCR analysis of tDNA-ILP provides an accurate and rapid molecular method for the identification of human staphylococci.

Full Text

The Full Text of this article is available as a PDF (397.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannerman T. L., Kleeman K. T., Kloos W. E. Evaluation of the Vitek Systems Gram-Positive Identification card for species identification of coagulase-negative staphylococci. J Clin Microbiol. 1993 May;31(5):1322–1325. doi: 10.1128/jcm.31.5.1322-1325.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ehrenstein B., Bernards A. T., Dijkshoorn L., Gerner-Smidt P., Towner K. J., Bouvet P. J., Daschner F. D., Grundmann H. Acinetobacter species identification by using tRNA spacer fingerprinting. J Clin Microbiol. 1996 Oct;34(10):2414–2420. doi: 10.1128/jcm.34.10.2414-2420.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goh S. H., Potter S., Wood J. O., Hemmingsen S. M., Reynolds R. P., Chow A. W. HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol. 1996 Apr;34(4):818–823. doi: 10.1128/jcm.34.4.818-823.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldmann D. A., Pier G. B. Pathogenesis of infections related to intravascular catheterization. Clin Microbiol Rev. 1993 Apr;6(2):176–192. doi: 10.1128/cmr.6.2.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grundmann H., Schneider C., Tichy H. V., Simon R., Klare I., Hartung D., Daschner F. D. Automated laser fluorescence analysis of randomly amplified polymorphic DNA: a rapid method for investigating nosocomial transmission of Acinetobacter baumannii. J Med Microbiol. 1995 Dec;43(6):446–451. doi: 10.1099/00222615-43-6-446. [DOI] [PubMed] [Google Scholar]
  6. Gürtler V., Stanisich V. A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology. 1996 Jan;142(Pt 1):3–16. doi: 10.1099/13500872-142-1-3. [DOI] [PubMed] [Google Scholar]
  7. Ieven M., Verhoeven J., Pattyn S. R., Goossens H. Rapid and economical method for species identification of clinically significant coagulase-negative staphylococci. J Clin Microbiol. 1995 May;33(5):1060–1063. doi: 10.1128/jcm.33.5.1060-1063.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Janda W. M., Ristow K., Novak D. Evaluation of RapiDEC Staph for identification of Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus. J Clin Microbiol. 1994 Sep;32(9):2056–2059. doi: 10.1128/jcm.32.9.2056-2059.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kleeman K. T., Bannerman T. L., Kloos W. E. Species distribution of coagulase-negative staphylococcal isolates at a community hospital and implications for selection of staphylococcal identification procedures. J Clin Microbiol. 1993 May;31(5):1318–1321. doi: 10.1128/jcm.31.5.1318-1321.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kloos W. E., Bannerman T. L. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev. 1994 Jan;7(1):117–140. doi: 10.1128/cmr.7.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Latorre M., Rojo P. M., Unzaga M. J., Cisterna R. Staphylococcus schleiferi: a new opportunistic pathogen. Clin Infect Dis. 1993 Apr;16(4):589–590. doi: 10.1093/clind/16.4.589. [DOI] [PubMed] [Google Scholar]
  12. McClelland M., Petersen C., Welsh J. Length polymorphisms in tRNA intergenic spacers detected by using the polymerase chain reaction can distinguish streptococcal strains and species. J Clin Microbiol. 1992 Jun;30(6):1499–1504. doi: 10.1128/jcm.30.6.1499-1504.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Piccolomini R., Catamo G., Picciani C., D'Antonio D. Evaluation of Staf-Sistem 18-R for identification of staphylococcal clinical isolates to the species level. J Clin Microbiol. 1994 Mar;32(3):649–653. doi: 10.1128/jcm.32.3.649-653.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Refsahl K., Andersen B. M. Clinically significant coagulase-negative staphylococci: identification and resistance patterns. J Hosp Infect. 1992 Sep;22(1):19–31. doi: 10.1016/0195-6701(92)90127-8. [DOI] [PubMed] [Google Scholar]
  15. Rhoden D. L., Miller J. M. Four-year prospective study of STAPH-IDENT system and conventional method for reference identification of Staphylococcus, Stomatococcus, and Micrococcus spp.. J Clin Microbiol. 1995 Jan;33(1):96–98. doi: 10.1128/jcm.33.1.96-98.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rupp M. E., Archer G. L. Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis. 1994 Aug;19(2):231–245. doi: 10.1093/clinids/19.2.231. [DOI] [PubMed] [Google Scholar]
  17. Schleifer K. H., Kroppenstedt R. M. Chemical and molecular classification of staphylococci. Soc Appl Bacteriol Symp Ser. 1990;19:9S–24S. doi: 10.1111/j.1365-2672.1990.tb01794.x. [DOI] [PubMed] [Google Scholar]
  18. Stoakes L., John M. A., Lannigan R., Schieven B. C., Ramos M., Harley D., Hussain Z. Gas-liquid chromatography of cellular fatty acids for identification of staphylococci. J Clin Microbiol. 1994 Aug;32(8):1908–1910. doi: 10.1128/jcm.32.8.1908-1910.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Struelens M. J., Deplano A., Godard C., Maes N., Serruys E. Epidemiologic typing and delineation of genetic relatedness of methicillin-resistant Staphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis. J Clin Microbiol. 1992 Oct;30(10):2599–2605. doi: 10.1128/jcm.30.10.2599-2605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tenover F. C., Arbeit R., Archer G., Biddle J., Byrne S., Goering R., Hancock G., Hébert G. A., Hill B., Hollis R. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J Clin Microbiol. 1994 Feb;32(2):407–415. doi: 10.1128/jcm.32.2.407-415.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Unal S., Hoskins J., Flokowitsch J. E., Wu C. Y., Preston D. A., Skatrud P. L. Detection of methicillin-resistant staphylococci by using the polymerase chain reaction. J Clin Microbiol. 1992 Jul;30(7):1685–1691. doi: 10.1128/jcm.30.7.1685-1691.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vandenesch F., Etienne J., Reverdy M. E., Eykyn S. J. Endocarditis due to Staphylococcus lugdunensis: report of 11 cases and review. Clin Infect Dis. 1993 Nov;17(5):871–876. doi: 10.1093/clinids/17.5.871. [DOI] [PubMed] [Google Scholar]
  23. Vandenesch F., Eykyn S. J., Bes M., Meugnier H., Fleurette J., Etienne J. Identification and ribotypes of Staphylococcus caprae isolates isolated as human pathogens and from goat milk. J Clin Microbiol. 1995 Apr;33(4):888–892. doi: 10.1128/jcm.33.4.888-892.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vaneechoutte M., Dijkshoorn L., Tjernberg I., Elaichouni A., de Vos P., Claeys G., Verschraegen G. Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J Clin Microbiol. 1995 Jan;33(1):11–15. doi: 10.1128/jcm.33.1.11-15.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Welsh J., McClelland M. Genomic fingerprints produced by PCR with consensus tRNA gene primers. Nucleic Acids Res. 1991 Feb 25;19(4):861–866. doi: 10.1093/nar/19.4.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Welsh J., McClelland M. PCR-amplified length polymorphisms in tRNA intergenic spacers for categorizing staphylococci. Mol Microbiol. 1992 Jun;6(12):1673–1680. doi: 10.1111/j.1365-2958.1992.tb00892.x. [DOI] [PubMed] [Google Scholar]
  27. Widjojoatmodjo M. N., Fluit A. C., Verhoef J. Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol. 1995 Oct;33(10):2601–2606. doi: 10.1128/jcm.33.10.2601-2606.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES