Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Oct;35(10):2588–2592. doi: 10.1128/jcm.35.10.2588-2592.1997

Phenotypic and genotypic changes in Vibrio cholerae O139 Bengal.

M J Albert 1, N A Bhuiyan 1, K A Talukder 1, A S Faruque 1, S Nahar 1, S M Faruque 1, M Ansaruzzaman 1, M Rahman 1
PMCID: PMC230015  PMID: 9316912

Abstract

To find reasons for the recent decline of Vibrio cholerae O139 Bengal cholera in Bangladesh, phenotypic and genotypic changes in O139 isolates obtained from patients with cholera from 1993 to 1996 were studied. The isolates were tested for the presence of ctx and tcpA genes, hemagglutinin/protease (HA/P), capsule, D-mannose-sensitive hemagglutinin (MSHA), L-fucose-sensitive hemagglutinin (FSHA), tube test (tube) and CAMP test (CAMP) hemolytic activities, resistance to 2,4-diamino-6,7-diisopropyl pteridine (O/129) and trimethoprim-sulfamethoxazole (TMP-SMX), and genotype by pulsed-field gel electrophoresis (PFGE). All isolates possessed ctx and tcpA genes, HA/P, and a capsule. Most isolates were negative for FSHA, but although the majority of the isolates were positive for MSHA, no discernible trend in the activity was found during the study period. All early isolates were CAMP hemolysin positive and resistant to the vibriostatic compound O/129 and TMP-SMX, the two properties that could be used for the presumptive diagnosis of O139 cholera. However, subsequently, isolates that were CAMP hemolysin negative and susceptible to TMP-SMX and O/129 were increasingly encountered, with all the 1996 isolates being so, which suggested that these properties can no longer be used for the presumptive diagnosis of O139 cholera. V. cholerae O139 isolates that were CAMP hemolysin positive and resistant to O/129 and TMP-SMX produced a disease of greater severity than that caused by the CAMP hemolysin-negative and susceptible isolates on the basis of the lengths of stay of the hospitalized patients. The study period witnessed the evolution of four different genotypes by PFGE. All of these data suggested that the V. cholerae O139 isolates have undergone changes in some properties. However, how these changes influenced their prevalence relative to that of V. cholerae O1 in human infection is not clear. Studies of the environmental factors will provide the key for an understanding of the relative abundance of these vibrios.

Full Text

The Full Text of this article is available as a PDF (175.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert M. J., Bhuiyan N. A., Rahman A., Ghosh A. N., Hultenby K., Weintraub A., Nahar S., Kibriya A. K., Ansaruzzaman M., Shimada T. Phage specific for Vibrio cholerae O139 Bengal. J Clin Microbiol. 1996 Jul;34(7):1843–1845. doi: 10.1128/jcm.34.7.1843-1845.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albert M. J., Siddique A. K., Islam M. S., Faruque A. S., Ansaruzzaman M., Faruque S. M., Sack R. B. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet. 1993 Mar 13;341(8846):704–704. doi: 10.1016/0140-6736(93)90481-u. [DOI] [PubMed] [Google Scholar]
  3. Barrett T. J., Blake P. A. Epidemiological usefulness of changes in hemolytic activity of Vibrio cholerae biotype El Tor during the seventh pandemic. J Clin Microbiol. 1981 Jan;13(1):126–129. doi: 10.1128/jcm.13.1.126-129.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bauer A. W., Kirby W. M., Sherris J. C., Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493–496. [PubMed] [Google Scholar]
  5. Cheasty T., Rowe B., Said B., Frost J. Vibrio cholerae serogroup 0139 in England and Wales. BMJ. 1993 Oct 16;307(6910):1007–1007. doi: 10.1136/bmj.307.6910.1007-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chongsa-nguan M., Chaicumpa W., Moolasart P., Kandhasingha P., Shimada T., Kurazono H., Takeda Y. Vibrio cholerae O139 Bengal in Bangkok. Lancet. 1993 Aug 14;342(8868):430–431. doi: 10.1016/0140-6736(93)92841-g. [DOI] [PubMed] [Google Scholar]
  7. Dhamodaran S., Ananthan S., Kuganantham P. A retrospective analysis of the Madras epidemic of non-01 Vibrio cholerae new serogroup 0139 Bengal. Indian J Med Res. 1995 Mar;101:94–97. [PubMed] [Google Scholar]
  8. Faruque A. S., Fuchs G. J., Albert M. J. Changing epidemiology of cholera due to Vibrio cholerae O1 and O139 Bengal in Dhaka, Bangladesh. Epidemiol Infect. 1996 Jun;116(3):275–278. doi: 10.1017/s0950268800052572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faruque A. S., Mahalanabis D., Islam A., Hoque S. S., Hasnat A. Common diarrhea pathogens and the risk of dehydration in young children with acute watery diarrhea: a case-control study. Am J Trop Med Hyg. 1993 Jul;49(1):93–100. doi: 10.4269/ajtmh.1993.49.93. [DOI] [PubMed] [Google Scholar]
  10. Faruque S. M., Ahmed K. M., Abdul Alim A. R., Qadri F., Siddique A. K., Albert M. J. Emergence of a new clone of toxigenic Vibrio cholerae O1 biotype El Tor displacing V. cholerae O139 Bengal in Bangladesh. J Clin Microbiol. 1997 Mar;35(3):624–630. doi: 10.1128/jcm.35.3.624-630.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finkelstein R. A., Boesman-Finkelstein M., Chang Y., Häse C. C. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun. 1992 Feb;60(2):472–478. doi: 10.1128/iai.60.2.472-478.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finkelstein R. A., Boesman-Finkelstein M., Holt P. Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F.M. Burnet revisited. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1092–1095. doi: 10.1073/pnas.80.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisher-Hoch S. P., Khan A., Inam-ul-Haq, Khan M. A., Mintz E. D. Vibrio cholerae O139 in Karachi, Pakistan. Lancet. 1993 Dec 4;342(8884):1422–1423. doi: 10.1016/0140-6736(93)92780-w. [DOI] [PubMed] [Google Scholar]
  14. George V., Jesudason M. V., John T. J. CAMP test for the identification of Vibrio cholerae 0139. Indian J Med Res. 1996 Jan;103:55–57. [PubMed] [Google Scholar]
  15. Gerbaud G., Dodin A., Goldstein F., Courvalin P. Genetic basis of trimethoprim and O/129 resistance in Vibrio cholerae. Ann Inst Pasteur Microbiol. 1985 Nov-Dec;136B(3):265–273. doi: 10.1016/s0769-2609(85)80072-7. [DOI] [PubMed] [Google Scholar]
  16. Hall R. H., Khambaty F. M., Kothary M. H., Keasler S. P., Tall B. D. Vibrio cholerae non-O1 serogroup associated with cholera gravis genetically and physiologically resembles O1 E1 Tor cholera strains. Infect Immun. 1994 Sep;62(9):3859–3863. doi: 10.1128/iai.62.9.3859-3863.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huq A., West P. A., Small E. B., Huq M. I., Colwell R. R. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol. 1984 Aug;48(2):420–424. doi: 10.1128/aem.48.2.420-424.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Islam M. S., Drasar B. S., Sack R. B. The aquatic environment as a reservoir of Vibrio cholerae: a review. J Diarrhoeal Dis Res. 1993 Dec;11(4):197–206. [PubMed] [Google Scholar]
  19. Jonson G., Sanchez J., Svennerholm A. M. Expression and detection of different biotype-associated cell-bound haemagglutinins of Vibrio cholerae O1. J Gen Microbiol. 1989 Jan;135(1):111–120. doi: 10.1099/00221287-135-1-111. [DOI] [PubMed] [Google Scholar]
  20. Keasler S. P., Hall R. H. Detecting and biotyping Vibrio cholerae O1 with multiplex polymerase chain reaction. Lancet. 1993 Jun 26;341(8861):1661–1661. doi: 10.1016/0140-6736(93)90792-f. [DOI] [PubMed] [Google Scholar]
  21. Kurazono H., Okuda J., Takeda Y., Nair G. B., Albert M. J., Sack R. B., Chongsa-nguan M., Chaicumpa W. Vibrio cholerae O139 Bengal isolated from India, Bangladesh and Thailand are clonal as determined by pulsed-field gel electrophoresis. J Infect. 1994 Jul;29(1):109–110. doi: 10.1016/s0163-4453(94)95357-0. [DOI] [PubMed] [Google Scholar]
  22. Lesmana M., Albert M. J., Subekti D., Richie E., Tjaniadi P., Walz S. E., Lebron C. I. Simple differentiation of Vibrio cholerae O139 from V. cholerae O1 and non-O1, non-O139 by modified CAMP test. J Clin Microbiol. 1996 Apr;34(4):1038–1040. doi: 10.1128/jcm.34.4.1038-1040.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lesmana M., Subekti D., Tjaniadi P., Pazzaglia G. Modified CAMP test for biogrouping Vibrio cholerae O1 strains and distinguishing them from strains of V. cholerae non-O1. J Clin Microbiol. 1994 Jan;32(1):235–237. doi: 10.1128/jcm.32.1.235-237.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MONSUR K. A. A highly selective gelatin-taurocholate-tellurite medium for the isolation of Vibrio cholerae. Trans R Soc Trop Med Hyg. 1961 Sep;55:440–442. doi: 10.1016/0035-9203(61)90090-6. [DOI] [PubMed] [Google Scholar]
  25. Mukhopadhyay A. K., Garg S., Mitra R., Basu A., Rajendran K., Dutta D., Bhattacharya S. K., Shimada T., Takeda T., Takeda Y. Temporal shifts in traits of Vibrio cholerae strains isolated from hospitalized patients in Calcutta: a 3-year (1993 to 1995) analysis. J Clin Microbiol. 1996 Oct;34(10):2537–2543. doi: 10.1128/jcm.34.10.2537-2543.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ramamurthy T., Garg S., Sharma R., Bhattacharya S. K., Nair G. B., Shimada T., Takeda T., Karasawa T., Kurazano H., Pal A. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993 Mar 13;341(8846):703–704. doi: 10.1016/0140-6736(93)90480-5. [DOI] [PubMed] [Google Scholar]
  27. Ramamurthy T., Pal A., Pal S. C., Nair G. B. Taxonomical implications of the emergence of high frequency of occurrence of 2,4-diamino-6,7-diisopropylpteridine-resistant strains of Vibrio cholerae from clinical cases of cholera in Calcutta, India. J Clin Microbiol. 1992 Mar;30(3):742–743. doi: 10.1128/jcm.30.3.742-743.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Siddique A. K., Akram K., Zaman K., Mutsuddy P., Eusof A., Sack R. B. Vibrio cholerae O139: how great is the threat of a pandemic? Trop Med Int Health. 1996 Jun;1(3):393–398. doi: 10.1046/j.1365-3156.1996.d01-54.x. [DOI] [PubMed] [Google Scholar]
  29. Sokol P. A., Ohman D. E., Iglewski B. H. A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa. J Clin Microbiol. 1979 Apr;9(4):538–540. doi: 10.1128/jcm.9.4.538-540.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Swerdlow D. L., Ries A. A. Vibrio cholerae non-O1--the eighth pandemic? Lancet. 1993 Aug 14;342(8868):382–383. doi: 10.1016/0140-6736(93)92806-5. [DOI] [PubMed] [Google Scholar]
  31. Waldor M. K., Colwell R., Mekalanos J. J. The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11388–11392. doi: 10.1073/pnas.91.24.11388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Waldor M. K., Mekalanos J. J. ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun. 1994 Jan;62(1):72–78. doi: 10.1128/iai.62.1.72-78.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Waldor M. K., Tschäpe H., Mekalanos J. J. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol. 1996 Jul;178(14):4157–4165. doi: 10.1128/jb.178.14.4157-4165.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yam W. C., Yuen K. Y., Wong S. S., Que T. L. Vibrio cholerae O139 susceptible to vibriostatic agent 0/129 and co-trimoxazole. Lancet. 1994 Aug 6;344(8919):404–405. [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES