Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Oct;35(10):2642–2648. doi: 10.1128/jcm.35.10.2642-2648.1997

Evaluation of a fluorescence-labelled oligonucleotide probe targeting 23S rRNA for in situ detection of Salmonella serovars in paraffin-embedded tissue sections and their rapid identification in bacterial smears.

S Nordentoft 1, H Christensen 1, H C Wegener 1
PMCID: PMC230026  PMID: 9316923

Abstract

A method for the detection of Salmonella based on fluorescence in situ hybridization (FISH) has been developed and applied for the direct detection of Salmonella in pure cultures and in formalin-fixed, paraffin-embedded tissue sections. On the basis of the 23S rRNA gene sequences representing all of the S. enterica subspecies and S. bongori, an 18-mer oligonucleotide probe was selected. The specificity of the probe was tested by in situ hybridization to bacterial cell smears of pure cultures. Forty-nine of 55 tested Salmonella serovars belonging to subspecies I, II, IIIb, IV, and VI hybridized with the probe. The probe did not hybridize to serovars from subspecies IIIa (S. arizonae) or to S. bongori. No cross-reaction to 64 other strains of the family Enterobacteriaceae or 18 other bacterial strains outside this family was observed. The probe was tested with sections of formalin-fixed, paraffin-embedded tissue from experimentally infected mice or from animals with a history of clinical salmonellosis. In these tissue sections the probe hybridized specifically to Salmonella serovars, allowing for the detection of single bacterial cells. The development of a fluorescence-labelled specific oligonucleotide probe makes the FISH technique a promising tool for the rapid identification of S. enterica in bacterial smears, as well as for the detection of S. enterica in histological tissue sections.

Full Text

The Full Text of this article is available as a PDF (249.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aabo S., Thomas A., Hall M. L., Smith H. R., Olsen J. E. Evaluation of a Salmonella-specific DNA probe by colony hybridization using non-isotopic and isotopic labeling. APMIS. 1992 Jul;100(7):623–628. doi: 10.1111/j.1699-0463.1992.tb03976.x. [DOI] [PubMed] [Google Scholar]
  2. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. The oligonucleotide probe database. Appl Environ Microbiol. 1996 Oct;62(10):3557–3559. doi: 10.1128/aem.62.10.3557-3559.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
  6. Christensen H., Boye M., Poulsen L. K., Rasmussen O. F. Analysis of fluorescent pseudomonads based on 23S ribosomal DNA sequences. Appl Environ Microbiol. 1994 Jun;60(6):2196–2199. doi: 10.1128/aem.60.6.2196-2199.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crosa J. H., Brenner D. J., Ewing W. H., Falkow S. Molecular relationships among the Salmonelleae. J Bacteriol. 1973 Jul;115(1):307–315. doi: 10.1128/jb.115.1.307-315.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. D'Aoust J. Y. Pathogenicity of foodborne Salmonella. Int J Food Microbiol. 1991 Jan;12(1):17–40. doi: 10.1016/0168-1605(91)90045-q. [DOI] [PubMed] [Google Scholar]
  9. DeLong E. F., Wickham G. S., Pace N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989 Mar 10;243(4896):1360–1363. doi: 10.1126/science.2466341. [DOI] [PubMed] [Google Scholar]
  10. Fitts R., Diamond M., Hamilton C., Neri M. DNA-DNA hybridization assay for detection of Salmonella spp. in foods. Appl Environ Microbiol. 1983 Nov;46(5):1146–1151. doi: 10.1128/aem.46.5.1146-1151.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988 Feb;170(2):720–726. doi: 10.1128/jb.170.2.720-726.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Le Minor L., Véron M., Popoff M. Proposition pour une nomenclature des Salmonella. Ann Microbiol (Paris) 1982 Sep-Oct;133(2):245–254. [PubMed] [Google Scholar]
  13. Licht T. R., Krogfelt K. A., Cohen P. S., Poulsen L. K., Urbance J., Molin S. Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella typhimurium studied by in situ hybridization. Infect Immun. 1996 Sep;64(9):3811–3817. doi: 10.1128/iai.64.9.3811-3817.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin C. K., Tsen H. Y. Development and evaluation of two novel oligonucleotide probes based on 16S rRNA sequence for the identification of Salmonella in foods. J Appl Bacteriol. 1995 May;78(5):507–520. doi: 10.1111/j.1365-2672.1995.tb03093.x. [DOI] [PubMed] [Google Scholar]
  15. Macnaughton S. J., O'Donnell A. G., Embley T. M. Permeabilization of mycolic-acid-containing actinomycetes for in situ hybridization with fluorescently labelled oligonucleotide probes. Microbiology. 1994 Oct;140(Pt 10):2859–2865. doi: 10.1099/00221287-140-10-2859. [DOI] [PubMed] [Google Scholar]
  16. Maddox C. W., Fales W. H. Use of a Salmonella typhimurium-derived virulence probe in the detection of Salmonella sp. and in the characterization of S. cholerae-suis virulence plasmids. J Vet Diagn Invest. 1991 Jul;3(3):218–222. doi: 10.1177/104063879100300306. [DOI] [PubMed] [Google Scholar]
  17. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Poulsen L. K., Ballard G., Stahl D. A. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol. 1993 May;59(5):1354–1360. doi: 10.1128/aem.59.5.1354-1360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Poulsen L. K., Lan F., Kristensen C. S., Hobolth P., Molin S., Krogfelt K. A. Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun. 1994 Nov;62(11):5191–5194. doi: 10.1128/iai.62.11.5191-5194.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reeves M. W., Evins G. M., Heiba A. A., Plikaytis B. D., Farmer J. J., 3rd Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol. 1989 Feb;27(2):313–320. doi: 10.1128/jcm.27.2.313-320.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K. H. In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology. 1994 Oct;140(Pt 10):2849–2858. doi: 10.1099/00221287-140-10-2849. [DOI] [PubMed] [Google Scholar]
  22. Sears L. E., Moran L. S., Kissinger C., Creasey T., Perry-O'Keefe H., Roskey M., Sutherland E., Slatko B. E. CircumVent thermal cycle sequencing and alternative manual and automated DNA sequencing protocols using the highly thermostable VentR (exo-) DNA polymerase. Biotechniques. 1992 Oct;13(4):626–633. [PubMed] [Google Scholar]
  23. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tegtmeier C., Jensen N. E., Jensen H. E. Development of a peroxidase-antiperoxidase (PAP) technique for the identification of Haemophilus somnus in pneumonic calf lungs in Denmark. APMIS. 1995 Jul-Aug;103(7-8):540–547. doi: 10.1111/j.1699-0463.1995.tb01403.x. [DOI] [PubMed] [Google Scholar]
  25. Van Camp G., Chapelle S., De Wachter R. Amplification and sequencing of variable regions in bacterial 23S ribosomal RNA genes with conserved primer sequences. Curr Microbiol. 1993 Sep;27(3):147–151. doi: 10.1007/BF01576012. [DOI] [PubMed] [Google Scholar]
  26. Wallner G., Amann R., Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14(2):136–143. doi: 10.1002/cyto.990140205. [DOI] [PubMed] [Google Scholar]
  27. Zhu Q., Lim C. K., Chan Y. N. Detection of Salmonella typhi by polymerase chain reaction. J Appl Bacteriol. 1996 Mar;80(3):244–251. doi: 10.1111/j.1365-2672.1996.tb03216.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES