Abstract
To assess dried plasma spots (DPSs) as a source of material for virus quantification, human immunodeficiency virus type 1 (HIV-1) RNA levels were quantified in matched DPS and liquid plasma samples from 73 infected patients, including 5 neonates and 4 adult patients with acute HIV-1 infection. Quantifications were performed by commercially available assays (NASBA [nucleic acid sequence-based amplification] or Amplicor, or both). There was a strong correlation between HIV-1 RNA levels in plasma and DPSs. More importantly, there was no decline in HIV-1 RNA levels in DPSs stored for as long as 2 weeks at 20 degrees C. Similarly, storage of DPSs for 3 days at 37 degrees C resulted in no decrease in viral RNA levels. For patients with primary infection, the DPS method allowed for the measurement of RNA levels in plasma during the initial spike in the level of viremia and in the subsequent period of suppressed viral replication. DPS quantification was equally informative in the neonatal setting, with all five newborns showing HIV-1 RNA loads of greater than 4.991 log10 copies/ml. We conclude that the viral RNA levels in DPSs are equivalent to those measured in fresh-frozen plasma. The ease and economy of DPS sampling, the minute volumes required, and the unexpected stability of dried RNA suggest that the use of DPSs will be particularly valuable for small-volume neonatal samples and large, population-based studies in which cold storage and transportation present special problems, as is often the case in developing countries. The ability to measure viral changes during primary infection suggests that the method will be useful for assessing vaccine efficacy in large field trials.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behets F., Kashamuka M., Pappaioanou M., Green T. A., Ryder R. W., Batter V., George J. R., Hannon W. H., Quinn T. C. Stability of human immunodeficiency virus type 1 antibodies in whole blood dried on filter paper and stored under various tropical conditions in Kinshasa, Zaire. J Clin Microbiol. 1992 May;30(5):1179–1182. doi: 10.1128/jcm.30.5.1179-1182.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassol S. A., Lapointe N., Salas T., Hankins C., Arella M., Fauvel M., Delage G., Boucher M., Samson J., Charest J. Diagnosis of vertical HIV-1 transmission using the polymerase chain reaction and dried blood spot specimens. J Acquir Immune Defic Syndr. 1992;5(2):113–119. [PubMed] [Google Scholar]
- Cassol S. A., Read S., Weniger B. G., Gomez P., Lapointe N., Ou C. Y., Babu P. G. Dried blood spots collected on filter paper: an international resource for the diagnosis and genetic characterization of human immunodeficiency virus type-1. Mem Inst Oswaldo Cruz. 1996 May-Jun;91(3):351–358. doi: 10.1590/s0074-02761996000300019. [DOI] [PubMed] [Google Scholar]
- Cassol S., Butcher A., Kinard S., Spadoro J., Sy T., Lapointe N., Read S., Gomez P., Fauvel M., Major C. Rapid screening for early detection of mother-to-child transmission of human immunodeficiency virus type 1. J Clin Microbiol. 1994 Nov;32(11):2641–2645. doi: 10.1128/jcm.32.11.2641-2645.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassol S., Salas T., Arella M., Neumann P., Schechter M. T., O'Shaughnessy M. Use of dried blood spot specimens in the detection of human immunodeficiency virus type 1 by the polymerase chain reaction. J Clin Microbiol. 1991 Apr;29(4):667–671. doi: 10.1128/jcm.29.4.667-671.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassol S., Salas T., Gill M. J., Montpetit M., Rudnik J., Sy C. T., O'Shaughnessy M. V. Stability of dried blood spot specimens for detection of human immunodeficiency virus DNA by polymerase chain reaction. J Clin Microbiol. 1992 Dec;30(12):3039–3042. doi: 10.1128/jcm.30.12.3039-3042.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassol S., Weniger B. G., Babu P. G., Salminen M. O., Zheng X., Htoon M. T., Delaney A., O'Shaughnessy M., Ou C. Y. Detection of HIV type 1 env subtypes A, B, C, and E in Asia using dried blood spots: a new surveillance tool for molecular epidemiology. AIDS Res Hum Retroviruses. 1996 Oct 10;12(15):1435–1441. doi: 10.1089/aid.1996.12.1435. [DOI] [PubMed] [Google Scholar]
- Chin J. Current and future dimensions of the HIV/AIDS pandemic in women and children. Lancet. 1990 Jul 28;336(8709):221–224. doi: 10.1016/0140-6736(90)91743-t. [DOI] [PubMed] [Google Scholar]
- Comeau A. M., Harris J. A., McIntosh K., Weiblen B. J., Hoff R., Grady G. F. Polymerase chain reaction in detecting HIV infection among seropositive infants: relation to clinical status and age and to results of other assays. J Acquir Immune Defic Syndr. 1992;5(3):271–278. [PubMed] [Google Scholar]
- Comeau A. M., Pitt J., Hillyer G. V., Landesman S., Bremer J., Chang B. H., Lew J., Moye J., Grady G. F., McIntosh K. Early detection of human immunodeficiency virus on dried blood spot specimens: sensitivity across serial specimens. Women and Infants Transmission Study Group. J Pediatr. 1996 Jul;129(1):111–118. doi: 10.1016/s0022-3476(96)70197-x. [DOI] [PubMed] [Google Scholar]
- Coombs R. W., Collier A. C., Allain J. P., Nikora B., Leuther M., Gjerset G. F., Corey L. Plasma viremia in human immunodeficiency virus infection. N Engl J Med. 1989 Dec 14;321(24):1626–1631. doi: 10.1056/NEJM198912143212402. [DOI] [PubMed] [Google Scholar]
- Furtado M. R., Kingsley L. A., Wolinsky S. M. Changes in the viral mRNA expression pattern correlate with a rapid rate of CD4+ T-cell number decline in human immunodeficiency virus type 1-infected individuals. J Virol. 1995 Apr;69(4):2092–2100. doi: 10.1128/jvi.69.4.2092-2100.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrick M. D., Dembure P., Guthrie R. Sickle-cell anemia and other hemoglobinopathies. Procedures and strategy for screening employing spots of blood on filter paper as specimens. N Engl J Med. 1973 Jun 14;288(24):1265–1268. doi: 10.1056/NEJM197306142882403. [DOI] [PubMed] [Google Scholar]
- Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
- Hoff R., Berardi V. P., Weiblen B. J., Mahoney-Trout L., Mitchell M. L., Grady G. F. Seroprevalence of human immunodeficiency virus among childbearing women. Estimation by testing samples of blood from newborns. N Engl J Med. 1988 Mar 3;318(9):525–530. doi: 10.1056/NEJM198803033180901. [DOI] [PubMed] [Google Scholar]
- Ioannidis J. P., Cappelleri J. C., Lau J., Sacks H. S., Skolnik P. R. Predictive value of viral load measurements in asymptomatic untreated HIV-1 infection: a mathematical model. AIDS. 1996 Mar;10(3):255–262. doi: 10.1097/00002030-199603000-00003. [DOI] [PubMed] [Google Scholar]
- Jurriaans S., Van Gemen B., Weverling G. J., Van Strijp D., Nara P., Coutinho R., Koot M., Schuitemaker H., Goudsmit J. The natural history of HIV-1 infection: virus load and virus phenotype independent determinants of clinical course? Virology. 1994 Oct;204(1):223–233. doi: 10.1006/viro.1994.1526. [DOI] [PubMed] [Google Scholar]
- Katzenstein D. A., Holodniy M. HIV viral load quantification, HIV resistance, and antiretroviral therapy. AIDS Clin Rev. 1995:277–303. [PubMed] [Google Scholar]
- McCabe E. R., Huang S. Z., Seltzer W. K., Law M. L. DNA microextraction from dried blood spots on filter paper blotters: potential applications to newborn screening. Hum Genet. 1987 Mar;75(3):213–216. doi: 10.1007/BF00281061. [DOI] [PubMed] [Google Scholar]
- Mellors J. W., Kingsley L. A., Rinaldo C. R., Jr, Todd J. A., Hoo B. S., Kokka R. P., Gupta P. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med. 1995 Apr 15;122(8):573–579. doi: 10.7326/0003-4819-122-8-199504150-00003. [DOI] [PubMed] [Google Scholar]
- Michael N. L., Brown A. E., Voigt R. F., Frankel S. S., Mascola J. R., Brothers K. S., Louder M., Birx D. L., Cassol S. A. Rapid disease progression without seroconversion following primary human immunodeficiency virus type 1 infection--evidence for highly susceptible human hosts. J Infect Dis. 1997 Jun;175(6):1352–1359. doi: 10.1086/516467. [DOI] [PubMed] [Google Scholar]
- Michael N. L., Mo T., Merzouki A., O'Shaughnessy M., Oster C., Burke D. S., Redfield R. R., Birx D. L., Cassol S. A. Human immunodeficiency virus type 1 cellular RNA load and splicing patterns predict disease progression in a longitudinally studied cohort. J Virol. 1995 Mar;69(3):1868–1877. doi: 10.1128/jvi.69.3.1868-1877.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen C. M., Bygbjerg I. C., Vestergaard B. F. Detection of HIV antigens in eluates from whole blood collected on filterpaper. Lancet. 1987 Mar 7;1(8532):566–567. doi: 10.1016/s0140-6736(87)90213-3. [DOI] [PubMed] [Google Scholar]
- Nyambi P. N., Fransen K., De Beenhouwer H., Chomba E. N., Temmerman M., Ndinya-Achola J. O., Piot P., van der Groen G. Detection of human immunodeficiency virus type 1 (HIV-1) in heel prick blood on filter paper from children born to HIV-1-seropositive mothers. J Clin Microbiol. 1994 Nov;32(11):2858–2860. doi: 10.1128/jcm.32.11.2858-2860.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palumbo P. E., Kwok S., Waters S., Wesley Y., Lewis D., McKinney N., Bardeguez A., Connor E. M., Oleske J. M. Viral measurement by polymerase chain reaction-based assays in human immunodeficiency virus-infected infants. J Pediatr. 1995 Apr;126(4):592–595. doi: 10.1016/s0022-3476(95)70357-8. [DOI] [PubMed] [Google Scholar]
- Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar 15;271(5255):1582–1586. doi: 10.1126/science.271.5255.1582. [DOI] [PubMed] [Google Scholar]
- Piatak M., Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993 Mar 19;259(5102):1749–1754. doi: 10.1126/science.8096089. [DOI] [PubMed] [Google Scholar]
- Saksela K., Stevens C. E., Rubinstein P., Taylor P. E., Baltimore D. HIV-1 messenger RNA in peripheral blood mononuclear cells as an early marker of risk for progression to AIDS. Ann Intern Med. 1995 Nov 1;123(9):641–648. doi: 10.7326/0003-4819-123-9-199511010-00001. [DOI] [PubMed] [Google Scholar]
- Schnittman S. M., Greenhouse J. J., Lane H. C., Pierce P. F., Fauci A. S. Frequent detection of HIV-1-specific mRNAs in infected individuals suggests ongoing active viral expression in all stages of disease. AIDS Res Hum Retroviruses. 1991 Apr;7(4):361–367. doi: 10.1089/aid.1991.7.361. [DOI] [PubMed] [Google Scholar]
- Steketee R. W., Abrams E. J., Thea D. M., Brown T. M., Lambert G., Orloff S., Weedon J., Bamji M., Schoenbaum E. E., Rapier J. Early detection of perinatal human immunodeficiency virus (HIV) type 1 infection using HIV RNA amplification and detection. New York City Perinatal HIV Transmission Collaborative Study. J Infect Dis. 1997 Mar;175(3):707–711. doi: 10.1093/infdis/175.3.707. [DOI] [PubMed] [Google Scholar]
- Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
- van Gemen B., Kievits T., Nara P., Huisman H. G., Jurriaans S., Goudsmit J., Lens P. Qualitative and quantitative detection of HIV-1 RNA by nucleic acid sequence-based amplification. AIDS. 1993 Nov;7 (Suppl 2):S107–S110. doi: 10.1097/00002030-199311002-00020. [DOI] [PubMed] [Google Scholar]
- van Gemen B., Kievits T., Schukkink R., van Strijp D., Malek L. T., Sooknanan R., Huisman H. G., Lens P. Quantification of HIV-1 RNA in plasma using NASBA during HIV-1 primary infection. J Virol Methods. 1993 Jul;43(2):177–187. doi: 10.1016/0166-0934(93)90075-3. [DOI] [PubMed] [Google Scholar]