Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Nov;35(11):2846–2853. doi: 10.1128/jcm.35.11.2846-2853.1997

Performance of the Amplicor human immunodeficiency virus type 1 PCR and analysis of specimens with false-negative results.

K L Barlow 1, J H Tosswill 1, J V Parry 1, J P Clewley 1
PMCID: PMC230073  PMID: 9350745

Abstract

Over a 4-year period, the Roche Amplicor kit was used in a United Kingdom reference laboratory for the detection or confirmation of human immunodeficiency virus (HIV) type 1 infection, particularly in infants born to HIV-infected mothers. Of 408 specimens from adults and older children tested, the 122 seronegative specimens were all Amplicor negative. Of the 286 seropositive specimens, 268 were Amplicor positive. On the basis of these results, the Amplicor assay has a specificity of 100% and a sensitivity of 93.7%. In addition, for 247 specimens from infants and young children, serological results may not have been diagnostic because of placental transfer of maternal antibodies. Forty-eight were Amplicor positive, and of the 199 Amplicor-negative specimens, 19 were assumed to be false negative on the basis of clinical data, serological markers (including p24 antigen), and/or results for previous or follow-up specimens. This represents a sensitivity of 75% for the Amplicor test for specimens from patients under 2 years of age. Of these 37 false-negative specimens plus 2 specimens from other laboratories, 31 could be characterized by amplifying extracted material from them by an in-house nested gag PCR spanning the Amplicor target region. The amplicons were sequenced and found to represent subtypes A (35.5%), B (22.6%), C (22.6%), D (16.1%), and G (3.2%). False-negative results by the Amplicor assay may be ascribed to low-target copy number, the physical behavior of one primer (SK462), and sequence variation in the target region of the other primer (SK431).

Full Text

The Full Text of this article is available as a PDF (797.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold C., Barlow K. L., Kaye S., Loveday C., Balfe P., Clewley J. P. HIV type 1 sequence subtype G transmission from mother to infant: failure of variant sequence species to amplify in the Roche Amplicor Test. AIDS Res Hum Retroviruses. 1995 Aug;11(8):999–1001. doi: 10.1089/aid.1995.11.999. [DOI] [PubMed] [Google Scholar]
  2. Barlow K. L., Tosswill J. H., Clewley J. P. Analysis and genotyping of PCR products of the Amplicor HIV-1 kit. J Virol Methods. 1995 Mar;52(1-2):65–74. doi: 10.1016/0166-0934(94)00139-8. [DOI] [PubMed] [Google Scholar]
  3. Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746–3750. doi: 10.1073/pnas.83.11.3746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Candotti D., Jung M., Kerouedan D., Rosenheim M., Gentilini M., M'Pele P., Huraux J. M., Agut H. Genetic variability affects the detection of HIV by polymerase chain reaction. AIDS. 1991 Aug;5(8):1003–1007. doi: 10.1097/00002030-199108000-00012. [DOI] [PubMed] [Google Scholar]
  5. Cassol S., Butcher A., Kinard S., Spadoro J., Sy T., Lapointe N., Read S., Gomez P., Fauvel M., Major C. Rapid screening for early detection of mother-to-child transmission of human immunodeficiency virus type 1. J Clin Microbiol. 1994 Nov;32(11):2641–2645. doi: 10.1128/jcm.32.11.2641-2645.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clewley J. P., Arnold C., Barlow K. L., Grant P. R., Parry J. V. Diverse HIV-1 genetic subtypes in UK. Lancet. 1996 May 25;347(9013):1487–1487. doi: 10.1016/s0140-6736(96)91724-9. [DOI] [PubMed] [Google Scholar]
  7. Clewley J. P. Genetic diversity and HIV detection by PCR. Lancet. 1995 Dec 2;346(8988):1489–1489. doi: 10.1016/s0140-6736(95)92505-8. [DOI] [PubMed] [Google Scholar]
  8. Coutlée F., Saint-Antoine P., Olivier C., Vessous-Elbaz A., Voyer H., Berrada F., Bégin P., Giroux L., Viscidi R. Discordance between primer pairs in the polymerase chain reaction for detection of human immunodeficiency virus type 1: a role for taq polymerase inhibitors. J Infect Dis. 1991 Oct;164(4):817–818. doi: 10.1093/infdis/164.4.817. [DOI] [PubMed] [Google Scholar]
  9. Dunn D. T., Brandt C. D., Krivine A., Cassol S. A., Roques P., Borkowsky W., De Rossi A., Denamur E., Ehrnst A., Loveday C. The sensitivity of HIV-1 DNA polymerase chain reaction in the neonatal period and the relative contributions of intra-uterine and intra-partum transmission. AIDS. 1995 Sep;9(9):F7–11. doi: 10.1097/00002030-199509000-00001. [DOI] [PubMed] [Google Scholar]
  10. Fransen K., van Kerckhoven I., Piot P., van der Groen G. Evaluation and comparison of the Amplicor HIV-1 PCR kit with an 'in-house' nested PCR. Clin Diagn Virol. 1995 Dec;4(4):311–319. doi: 10.1016/0928-0197(95)00016-x. [DOI] [PubMed] [Google Scholar]
  11. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gibson K. M., McLean K. A., Clewley J. P. A simple and rapid method for detecting human immunodeficiency virus by PCR. J Virol Methods. 1991 May;32(2-3):277–286. doi: 10.1016/0166-0934(91)90058-8. [DOI] [PubMed] [Google Scholar]
  13. Giri A. A., Lillo F. B., McDermott J. L., Jannuzzi C., Risso S., Fornia G. L., Concedi D. R., Varnier O. E. Detection of HIV-1 sequences in children using radioactive and colorimetric polymerase chain reactions. J Med Virol. 1994 Apr;42(4):414–419. doi: 10.1002/jmv.1890420415. [DOI] [PubMed] [Google Scholar]
  14. Jackson J. B., Ndugwa C., Mmiro F., Kataaha P., Guay L., Dragon E. A., Goldfarb J., Olness K. Non-isotopic polymerase chain reaction methods for the detection of HIV-1 in Ugandan mothers and infants. AIDS. 1991 Dec;5(12):1463–1467. doi: 10.1097/00002030-199112000-00008. [DOI] [PubMed] [Google Scholar]
  15. Khadir A., Coutlée F., Saint-Antoine P., Olivier C., Voyer H., Kessous-Elbaz A. Clinical evaluation of Amplicor HIV-1 test for detection of human immunodeficiency virus type 1 proviral DNA in peripheral blood mononuclear cells. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Jul 1;9(3):257–263. [PubMed] [Google Scholar]
  16. Kovacs A., Xu J., Rasheed S., Li X. L., Kogan T., Lee M., Liu C., Chan L. Comparison of a rapid nonisotopic polymerase chain reaction assay with four commonly used methods for the early diagnosis of human immunodeficiency virus type 1 infection in neonates and children. Pediatr Infect Dis J. 1995 Nov;14(11):948–954. doi: 10.1097/00006454-199511000-00005. [DOI] [PubMed] [Google Scholar]
  17. Loussert-Ajaka I., Descamps D., Simon F., Brun-Vézinet F., Ekwalanga M., Saragosti S. Genetic diversity and HIV detection by polymerase chain reaction. Lancet. 1995 Sep 30;346(8979):912–913. doi: 10.1016/s0140-6736(95)92762-x. [DOI] [PubMed] [Google Scholar]
  18. Marin M. G., Lillo F., Varnier O. E., Bresciani S., Molinelli A., Abecasis C., Bonini P. A., Albertini A. Detection of HIV-1 proviral sequences in lymphocytes using a qualitative polymerase chain reaction assay. Eur J Clin Microbiol Infect Dis. 1995 Jul;14(7):621–625. doi: 10.1007/BF01690739. [DOI] [PubMed] [Google Scholar]
  19. Mokili J. L., Connell J. A., Parry J. V., Green S. D., Davies A. G., Cutting W. A. How valuable are IgA and IgM anti-HIV tests for the diagnosis of mother-child transmission of HIV in an African setting? Clin Diagn Virol. 1996 Feb;5(1):3–12. doi: 10.1016/0928-0197(95)00149-2. [DOI] [PubMed] [Google Scholar]
  20. Parry J. V., Connell J. A., Reinbott P., Garcia A. B., Avillez F., Mortimer P. P. GACPAT HIV 1 + 2: a simple, inexpensive assay to screen for, and discriminate between, anti-HIV 1 and anti-HIV 2. J Med Virol. 1995 Jan;45(1):10–16. doi: 10.1002/jmv.1890450103. [DOI] [PubMed] [Google Scholar]
  21. Poussin K., Harter-Chaput A., Sayada C., Bréchot C. Evaluation of the amplicor HIV1 DNA diagnosis test. Res Virol. 1994 Nov-Dec;145(6):393–395. doi: 10.1016/s0923-2516(07)80045-8. [DOI] [PubMed] [Google Scholar]
  22. Quinn T. C., Kline R. L., Halsey N., Hutton N., Ruff A., Butz A., Boulos R., Modlin J. F. Early diagnosis of perinatal HIV infection by detection of viral-specific IgA antibodies. JAMA. 1991 Dec 25;266(24):3439–3442. [PubMed] [Google Scholar]
  23. Quinn T. C., Kline R. L., Halsey N., Hutton N., Ruff A., Butz A., Boulos R., Modlin J. F. Early diagnosis of perinatal HIV infection by detection of viral-specific IgA antibodies. JAMA. 1991 Dec 25;266(24):3439–3442. [PubMed] [Google Scholar]
  24. Weiblen B. J., Lee F. K., Cooper E. R., Landesman S. H., McIntosh K., Harris J. A., Nesheim S., Mendez H., Pelton S. I., Nahmias A. J. Early diagnosis of HIV infection in infants by detection of IgA HIV antibodies. Lancet. 1990 Apr 28;335(8696):988–990. doi: 10.1016/0140-6736(90)91061-e. [DOI] [PubMed] [Google Scholar]
  25. Whetsell A. J., Drew J. B., Milman G., Hoff R., Dragon E. A., Adler K., Hui J., Otto P., Gupta P., Farzadegan H. Comparison of three nonradioisotopic polymerase chain reaction-based methods for detection of human immunodeficiency virus type 1. J Clin Microbiol. 1992 Apr;30(4):845–853. doi: 10.1128/jcm.30.4.845-853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zazzi M., Romano L., Catucci M., De Milito A., Almi P., Gonnelli A., Rubino M., Valensin P. E. Low human immunodeficiency virus type 1 (HIV-1) DNA burden as a major cause for failure to detect HIV-1 DNA in clinical specimens by PCR. J Clin Microbiol. 1995 Jan;33(1):205–208. doi: 10.1128/jcm.33.1.205-208.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES