Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Nov;35(11):2908–2914. doi: 10.1128/jcm.35.11.2908-2914.1997

Phylogenetic analyses of Chlamydia psittaci strains from birds based on 16S rRNA gene sequence.

T Takahashi 1, M Masuda 1, T Tsuruno 1, Y Mori 1, I Takashima 1, T Hiramune 1, N Kikuchi 1
PMCID: PMC230085  PMID: 9350757

Abstract

The nucleotide sequences of 16S ribosomal DNA (rDNA) were determined for 39 strains of Chlamydia psittaci (34 from birds and 5 from mammals) and for 4 Chlamydia pecorum strains. The sequences were compared phylogenetically with the gene sequences of nine Chlamydia strains (covering four species of the genus) retrieved from nucleotide databases. In the neighbor-joining tree, C. psittaci strains were more closely related to each other than to the other Chlamydia species, although a feline pneumonitis strain was distinct (983 to 98.6% similarity to other strains) and appeared to form the deepest subline within the species of C. psittaci (bootstrap value, 99%). The other strains of C. psittaci exhibiting similarity values of more than 99% were branched into several subgroups. Two pigeon strains and one turkey strain formed a distinct clade recovered in 97% of the bootstrapped trees. The other pigeon strains seemed to be distinct from the strains from psittacine birds, with 88% of bootstrap value. In the cluster of psittacine strains, three parakeet strains and an ovine abortion strain exhibited a specific association (level of sequence similarity, 99.9% or more; bootstrap value, 95%). These suggest that at least four groups of strains exist within the species C. psittaci. The 16S rDNA sequence is a valuable phylogenetic marker for the taxonomy of chlamydiae, and its analysis is a reliable tool for identification of the organisms.

Full Text

The Full Text of this article is available as a PDF (493.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An Q., Liu J., O'Brien W., Radcliffe G., Buxton D., Popoff S., King W., Vera-Garcia M., Lu L., Shah J. Comparison of characteristics of Q beta replicase-amplified assay with competitive PCR assay for Chlamydia trachomatis. J Clin Microbiol. 1995 Jan;33(1):58–63. doi: 10.1128/jcm.33.1.58-63.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. An Q., Olive D. M. Molecular cloning and nucleic acid sequencing of Chlamydia trachomatis 16S rRNA genes from patient samples lacking the cryptic plasmid. Mol Cell Probes. 1994 Oct;8(5):429–435. doi: 10.1006/mcpr.1994.1061. [DOI] [PubMed] [Google Scholar]
  3. An Q., Radcliffe G., Vassallo R., Buxton D., O'Brien W. J., Pelletier D. A., Weisburg W. G., Klinger J. D., Olive D. M. Infection with a plasmid-free variant Chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection. J Clin Microbiol. 1992 Nov;30(11):2814–2821. doi: 10.1128/jcm.30.11.2814-2821.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andersen A. A. Comparison of avian Chlamydia psittaci isolates by restriction endonuclease analysis and serovar-specific monoclonal antibodies. J Clin Microbiol. 1991 Feb;29(2):244–249. doi: 10.1128/jcm.29.2.244-249.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andersen A. A. Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the microimmunofluorescence test. J Clin Microbiol. 1991 Apr;29(4):707–711. doi: 10.1128/jcm.29.4.707-711.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anderson I. E., Baxter S. I., Dunbar S., Rae A. G., Philips H. L., Clarkson M. J., Herring A. J. Analyses of the genomes of chlamydial isolates from ruminants and pigs support the adoption of the new species Chlamydia pecorum. Int J Syst Bacteriol. 1996 Jan;46(1):245–251. doi: 10.1099/00207713-46-1-245. [DOI] [PubMed] [Google Scholar]
  7. Banks J., Eddie B., Sung M., Sugg N., Schachter J., Meyer K. F. Plaque reduction technique for demonstrating neutralizing antibodies for Chlamydia. Infect Immun. 1970 Oct;2(4):443–447. doi: 10.1128/iai.2.4.443-447.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4801–4805. doi: 10.1073/pnas.75.10.4801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox G. E., Wisotzkey J. D., Jurtshuk P., Jr How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol. 1992 Jan;42(1):166–170. doi: 10.1099/00207713-42-1-166. [DOI] [PubMed] [Google Scholar]
  10. Frutos R., Pages M., Bellis M., Roizes G., Bergoin M. Pulsed-field gel electrophoresis determination of the genome size of obligate intracellular bacteria belonging to the genera Chlamydia, Rickettsiella, and Porochlamydia. J Bacteriol. 1989 Aug;171(8):4511–4513. doi: 10.1128/jb.171.8.4511-4513.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fukushi H., Hirai K. Chlamydia pecorum--the fourth species of genus Chlamydia. Microbiol Immunol. 1993;37(7):516–522. [PubMed] [Google Scholar]
  12. Fukushi H., Hirai K. Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin. J Bacteriol. 1989 May;171(5):2850–2855. doi: 10.1128/jb.171.5.2850-2855.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fukushi H., Hirai K. Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int J Syst Bacteriol. 1992 Apr;42(2):306–308. doi: 10.1099/00207713-42-2-306. [DOI] [PubMed] [Google Scholar]
  14. Fukushi H., Hirai K. Restriction fragment length polymorphisms of rRNA as genetic markers to differentiate Chlamydia spp. Int J Syst Bacteriol. 1993 Jul;43(3):613–617. doi: 10.1099/00207713-43-3-613. [DOI] [PubMed] [Google Scholar]
  15. Fukushi H., Nojiri K., Hirai K. Monoclonal antibody typing of Chlamydia psittaci strains derived from avian and mammalian species. J Clin Microbiol. 1987 Oct;25(10):1978–1981. doi: 10.1128/jcm.25.10.1978-1981.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gaydos C. A., Palmer L., Quinn T. C., Falkow S., Eiden J. J. Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences. Int J Syst Bacteriol. 1993 Jul;43(3):610–612. doi: 10.1099/00207713-43-3-610. [DOI] [PubMed] [Google Scholar]
  17. Gaydos C. A., Quinn T. C., Eiden J. J. Identification of Chlamydia pneumoniae by DNA amplification of the 16S rRNA gene. J Clin Microbiol. 1992 Apr;30(4):796–800. doi: 10.1128/jcm.30.4.796-800.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herring A. J. Typing Chlamydia psittaci--a review of methods and recent findings. Br Vet J. 1993 Sep-Oct;149(5):455–475. doi: 10.1016/S0007-1935(05)80111-3. [DOI] [PubMed] [Google Scholar]
  19. Hultman T., Bergh S., Moks T., Uhlén M. Bidirectional solid-phase sequencing of in vitro-amplified plasmid DNA. Biotechniques. 1991 Jan;10(1):84–93. [PubMed] [Google Scholar]
  20. Hultman T., Ståhl S., Hornes E., Uhlén M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989 Jul 11;17(13):4937–4946. doi: 10.1093/nar/17.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaltenboeck B., Kousoulas K. G., Storz J. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. J Bacteriol. 1993 Jan;175(2):487–502. doi: 10.1128/jb.175.2.487-502.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kikuta A., Furukawa N., Yoshida T., Fukushi H., Yamaguchi T., Hirai K. Antigenic analysis of avian Chlamydia psittaci using monoclonal antibodies to the major outer membrane protein. J Vet Med Sci. 1991 Jun;53(3):385–389. doi: 10.1292/jvms.53.385. [DOI] [PubMed] [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  24. Kuroda-Kitagawa Y., Suzuki-Muramatsu C., Yamaguchi T., Fukushi H., Hirai K. Antigenic analysis of Chlamydia pecorum and mammalian Chlamydia psittaci by use of monoclonal antibodies to the major outer membrane protein and a 56- to 64-kd protein. Am J Vet Res. 1993 May;54(5):709–712. [PubMed] [Google Scholar]
  25. Olsen G. J., Woese C. R. Ribosomal RNA: a key to phylogeny. FASEB J. 1993 Jan;7(1):113–123. doi: 10.1096/fasebj.7.1.8422957. [DOI] [PubMed] [Google Scholar]
  26. Puolakkainen M., Parker J., Kuo C. C., Grayston J. T., Campbell L. A. Further characterization of Chlamydia pneumoniae specific monoclonal antibodies. Microbiol Immunol. 1995;39(8):551–554. doi: 10.1111/j.1348-0421.1995.tb02241.x. [DOI] [PubMed] [Google Scholar]
  27. Roosendaal R., Walboomers J. M., Veltman O. R., Melgers I., Burger C., Bleker O. P., MacClaren D. M., Meijer C. J., van den Brule A. J. Comparison of different primer sets for detection of Chlamydia trachomatis by the polymerase chain reaction. J Med Microbiol. 1993 Jun;38(6):426–433. doi: 10.1099/00222615-38-6-426. [DOI] [PubMed] [Google Scholar]
  28. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  29. Scieux C., Grimont F., Regnault B., Grimont P. A. DNA fingerprinting of Chlamydia trachomatis by use of ribosomal RNA, oligonucleotide and randomly cloned DNA probes. Res Microbiol. 1992 Oct;143(8):755–765. doi: 10.1016/0923-2508(92)90103-u. [DOI] [PubMed] [Google Scholar]
  30. Stephens R. S., Sanchez-Pescador R., Wagar E. A., Inouye C., Urdea M. S. Diversity of Chlamydia trachomatis major outer membrane protein genes. J Bacteriol. 1987 Sep;169(9):3879–3885. doi: 10.1128/jb.169.9.3879-3885.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Storey C., Lusher M., Yates P., Richmond S. Evidence for Chlamydia pneumoniae of non-human origin. J Gen Microbiol. 1993 Nov;139(11):2621–2626. doi: 10.1099/00221287-139-11-2621. [DOI] [PubMed] [Google Scholar]
  32. Takahashi T., Takashima I., Hashimoto N. Immunotyping of Chlamydia psittaci by indirect immunofluorescence antibody test with monoclonal antibodies. Microbiol Immunol. 1988;32(3):251–263. doi: 10.1111/j.1348-0421.1988.tb01385.x. [DOI] [PubMed] [Google Scholar]
  33. Ueno H., Mizuno S., Takashima I., Osawa R., Blanshard W., Timms P., White N., Hashimoto N. Serological assessment of chlamydial infection in the koala by a slide EIA technique. Aust Vet J. 1991 Dec;68(12):393–396. doi: 10.1111/j.1751-0813.1991.tb03107.x. [DOI] [PubMed] [Google Scholar]
  34. Viale A. M., Arakaki A. K., Soncini F. C., Ferreyra R. G. Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int J Syst Bacteriol. 1994 Jul;44(3):527–533. doi: 10.1099/00207713-44-3-527. [DOI] [PubMed] [Google Scholar]
  35. Weisburg W. G., Hatch T. P., Woese C. R. Eubacterial origin of chlamydiae. J Bacteriol. 1986 Aug;167(2):570–574. doi: 10.1128/jb.167.2.570-574.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wyrick P. B., Richmond S. J. Biology of chlamydiae. J Am Vet Med Assoc. 1989 Dec 1;195(11):1507–1512. [PubMed] [Google Scholar]
  37. Yuan Y., Zhang Y. X., Watkins N. G., Caldwell H. D. Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun. 1989 Apr;57(4):1040–1049. doi: 10.1128/iai.57.4.1040-1049.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhang Y. X., Fox J. G., Ho Y., Zhang L., Stills H. F., Jr, Smith T. F. Comparison of the major outer-membrane protein (MOMP) gene of mouse pneumonitis (MoPn) and hamster SFPD strains of Chlamydia trachomatis with other Chlamydia strains. Mol Biol Evol. 1993 Nov;10(6):1327–1342. doi: 10.1093/oxfordjournals.molbev.a040079. [DOI] [PubMed] [Google Scholar]
  39. Zimmermann J., Voss H., Schwager C., Stegemann J., Erfle H., Stucky K., Kristensen T., Ansorge W. A simplified protocol for fast plasmid DNA sequencing. Nucleic Acids Res. 1990 Feb 25;18(4):1067–1067. doi: 10.1093/nar/18.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES