Abstract
This is the first report of the isolation of a coronavirus from elk calves. Two fecal samples from elk calves with diarrhea were shown to be positive for coronavirus-like particles by electron microscopy, and the particles were propagated in the human rectal tumor-18 cell line. After 24 h, syncytia were observed, and cell culture supernatants from both samples showed hemagglutinating activity with mouse erythrocytes. Cells infected with both elk coronavirus (ECV) isolates reacted with Z3A5, a monoclonal antibody against the spike protein of bovine coronavirus (BCV), on an indirect fluorescent antibody test. The protein profiles of both ECV isolates were similar to that of BCV as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. On Northern blot analysis, the transcriptional pattern of ECV was typical of coronaviruses, with a nested set of transcripts with common 3' end sequences. Based on a published nucleoprotein gene sequence for BCV (Mebus isolate), we arbitrarily designed two primers for amplification by PCR. After cloning, the nucleoprotein was sequenced and a high degree of homology (99%) between the nucleoprotein gene sequences of ECV and BCV was observed. Thus, ECV is closely related genetically and antigenically to BCV and will be a new member of antigenic group 2 of the mammalian coronaviruses, which possess hemagglutinin-esterase protein.
Full Text
The Full Text of this article is available as a PDF (939.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chasey D., Reynolds D. J., Bridger J. C., Debney T. G., Scott A. C. Identification of coronaviruses in exotic species of Bovidae. Vet Rec. 1984 Dec 8;115(23):602–603. doi: 10.1136/vr.115.23.602. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Crouch C. F., Bielefeldt Ohmann H., Watts T. C., Babiuk L. A. Chronic shedding of bovine enteric coronavirus antigen-antibody complexes by clinically normal cows. J Gen Virol. 1985 Jul;66(Pt 7):1489–1500. doi: 10.1099/0022-1317-66-7-1489. [DOI] [PubMed] [Google Scholar]
- Elazhary M. A., Frechette J. L., Silim A., Roy R. S. Serological evidence of some bovine viruses in the caribou (Rangifer tarandus caribou) in Quebec. J Wildl Dis. 1981 Oct;17(4):609–612. doi: 10.7589/0090-3558-17.4.609. [DOI] [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
- Guy J. S., Brian D. A. Bovine coronavirus genome. J Virol. 1979 Jan;29(1):293–300. doi: 10.1128/jvi.29.1.293-300.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapil S., Chard-Bergstrom C., Bolin P., Landers D. Plaque variations in clinical isolates of bovine coronavirus. J Vet Diagn Invest. 1995 Oct;7(4):538–539. doi: 10.1177/104063879500700420. [DOI] [PubMed] [Google Scholar]
- Kapil S., Pomeroy K. A., Goyal S. M., Trent A. M. Experimental infection with a virulent pneumoenteric isolate of bovine coronavirus. J Vet Diagn Invest. 1991 Jan;3(1):88–89. doi: 10.1177/104063879100300123. [DOI] [PubMed] [Google Scholar]
- Kapil S., Richardson K. L., Radi C., Chard-Bergstrom C. Factors affecting isolation and propagation of bovine coronavirus in human rectal tumor-18 cell line. J Vet Diagn Invest. 1996 Jan;8(1):96–99. doi: 10.1177/104063879600800115. [DOI] [PubMed] [Google Scholar]
- King B., Brian D. A. Bovine coronavirus structural proteins. J Virol. 1982 May;42(2):700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Muñoz M., Alvarez M., Lanza I., Cármenes P. Role of enteric pathogens in the aetiology of neonatal diarrhoea in lambs and goat kids in Spain. Epidemiol Infect. 1996 Aug;117(1):203–211. doi: 10.1017/s0950268800001321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pass D. A., Penhale W. J., Wilcox G. E., Batey R. G. Intestinal coronavirus-like particles in sheep with diarrhoea. Vet Rec. 1982 Jul 31;111(5):106–107. doi: 10.1136/vr.111.5.106. [DOI] [PubMed] [Google Scholar]
- Saif L. J. A review of evidence implicating bovine coronavirus in the etiology of winter dysentery in cows: an enigma resolved? Cornell Vet. 1990 Oct;80(4):303–311. [PubMed] [Google Scholar]
- Sharpee R. L., Mebus C. A., Bass E. P. Characterization of a calf diarrheal coronavirus. Am J Vet Res. 1976 Sep;37(9):1031–1041. [PubMed] [Google Scholar]
- Stair E. L., Rhodes M. B., White R. G., Mebus C. A. Neonatal calf diarrhea: purification and electron microscopy of a coronavirus-like agent. Am J Vet Res. 1972 Jun;33(6):1147–1156. [PubMed] [Google Scholar]
- Tsunemitsu H., el-Kanawati Z. R., Smith D. R., Reed H. H., Saif L. J. Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea. J Clin Microbiol. 1995 Dec;33(12):3264–3269. doi: 10.1128/jcm.33.12.3264-3269.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]