Abstract
Seven laboratories in six European countries examined 40 isolates belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex to investigate whether standardized protocols and quality-controlled reagents could produce reliable, discriminatory, and reproducible PCR-based fingerprinting results. Four PCR protocols with different primers (primers DAF4, ERIC-2, M13, and REP1 + REP2) were used. The epidemiological conclusions reached by the participating laboratories were substantially correct, with 96.4% of the total isolate grouping allocations agreeing with the consensus view. All laboratories identified the main epidemiological clusters, and each laboratory also identified two non-outbreak-related isolates. There were no significant differences between the isolate grouping results obtained by the different protocols and with the different primers. Visual comparison indicated that the standardized protocols and reagents yielded reproducible fingerprint patterns, but with some variations in particular band intensities. Minor variations in fingerprint profiles were detected, but computer-assisted analysis of PCR fingerprints obtained on agarose gels demonstrated that 88.3 to 91.6% (depending on the source of DNA) of the patterns clustered correctly, while 96.4 to 98.9% of the patterns clustered correctly following automated high-resolution laser fluorescence analysis. Correlation of the patterns for isogenic isolates ranged from 83.3 to 86.6% but was slightly better (mean correlation, 87.1%) for centrally prepared DNA extracts than for DNA extracts prepared by individual laboratories (mean correlation, 84.7%). It was concluded that independently produced PCR fingerprint patterns can be obtained reproducibly for Acinetobacter spp. at the practical level if (i) quality-controlled reagents, (ii) standardized extraction of DNA, and (iii) standardized amplification conditions are used.
Full Text
The Full Text of this article is available as a PDF (273.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergogne-Bérézin E., Towner K. J. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996 Apr;9(2):148–165. doi: 10.1128/cmr.9.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caetano-Anollés G., Bassam B. J., Gresshoff P. M. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnology (N Y) 1991 Jun;9(6):553–557. doi: 10.1038/nbt0691-553. [DOI] [PubMed] [Google Scholar]
- Ehrenstein B., Bernards A. T., Dijkshoorn L., Gerner-Smidt P., Towner K. J., Bouvet P. J., Daschner F. D., Grundmann H. Acinetobacter species identification by using tRNA spacer fingerprinting. J Clin Microbiol. 1996 Oct;34(10):2414–2420. doi: 10.1128/jcm.34.10.2414-2420.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grundmann H., Schneider C., Tichy H. V., Simon R., Klare I., Hartung D., Daschner F. D. Automated laser fluorescence analysis of randomly amplified polymorphic DNA: a rapid method for investigating nosocomial transmission of Acinetobacter baumannii. J Med Microbiol. 1995 Dec;43(6):446–451. doi: 10.1099/00222615-43-6-446. [DOI] [PubMed] [Google Scholar]
- Gräser Y., Klare I., Halle E., Gantenberg R., Buchholz P., Jacobi H. D., Presber W., Schönian G. Epidemiological study of an Acinetobacter baumannii outbreak by using polymerase chain reaction fingerprinting. J Clin Microbiol. 1993 Sep;31(9):2417–2420. doi: 10.1128/jcm.31.9.2417-2420.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maslow J. N., Mulligan M. E., Arbeit R. D. Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis. 1993 Aug;17(2):153–164. doi: 10.1093/clinids/17.2.153. [DOI] [PubMed] [Google Scholar]
- Meunier J. R., Grimont P. A. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol. 1993 Jun;144(5):373–379. doi: 10.1016/0923-2508(93)90194-7. [DOI] [PubMed] [Google Scholar]
- Power E. G. RAPD typing in microbiology--a technical review. J Hosp Infect. 1996 Dec;34(4):247–265. doi: 10.1016/s0195-6701(96)90106-1. [DOI] [PubMed] [Google Scholar]
- Stegemann J., Schwager C., Erfle H., Hewitt N., Voss H., Zimmermann J., Ansorge W. High speed on-line DNA sequencing on ultrathin slab gels. Nucleic Acids Res. 1991 Feb 11;19(3):675–676. doi: 10.1093/nar/19.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struelens M. J., Carlier E., Maes N., Serruys E., Quint W. G., van Belkum A. Nosocomial colonization and infection with multiresistant Acinetobacter baumannii: outbreak delineation using DNA macrorestriction analysis and PCR-fingerprinting. J Hosp Infect. 1993 Sep;25(1):15–32. doi: 10.1016/0195-6701(93)90005-k. [DOI] [PubMed] [Google Scholar]
- Tyler K. D., Wang G., Tyler S. D., Johnson W. M. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J Clin Microbiol. 1997 Feb;35(2):339–346. doi: 10.1128/jcm.35.2.339-346.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaneechoutte M. DNA fingerprinting techniques for microorganisms. A proposal for classification and nomenclature. Mol Biotechnol. 1996 Oct;6(2):115–142. doi: 10.1007/BF02740768. [DOI] [PubMed] [Google Scholar]
- Venugopal G., Mohapatra S., Salo D., Mohapatra S. Multiple mismatch annealing: basis for random amplified polymorphic DNA fingerprinting. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1382–1387. doi: 10.1006/bbrc.1993.2630. [DOI] [PubMed] [Google Scholar]
- Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991 Dec 25;19(24):6823–6831. doi: 10.1093/nar/19.24.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vila J., Marcos M. A., Jimenez de Anta M. T. A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J Med Microbiol. 1996 Jun;44(6):482–489. doi: 10.1099/00222615-44-6-482. [DOI] [PubMed] [Google Scholar]
- Webster C. A., Towner K. J., Humphreys H., Ehrenstein B., Hartung D., Grundmann H. Comparison of rapid automated laser fluorescence analysis of DNA fingerprints with four other computer-assisted approaches for studying relationships between Acinetobacter baumannii isolates. J Med Microbiol. 1996 Mar;44(3):185–194. doi: 10.1099/00222615-44-3-185. [DOI] [PubMed] [Google Scholar]
- Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiedmann-al-Ahmad M., Tichy H. V., Schön G. Characterization of Acinetobacter type strains and isolates obtained from wastewater treatment plants by PCR fingerprinting. Appl Environ Microbiol. 1994 Nov;60(11):4066–4071. doi: 10.1128/aem.60.11.4066-4071.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods C. R., Jr, Versalovic J., Koeuth T., Lupski J. R. Analysis of relationships among isolates of Citrobacter diversus by using DNA fingerprints generated by repetitive sequence-based primers in the polymerase chain reaction. J Clin Microbiol. 1992 Nov;30(11):2921–2929. doi: 10.1128/jcm.30.11.2921-2929.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Belkum A., Kluytmans J., van Leeuwen W., Bax R., Quint W., Peters E., Fluit A., Vandenbroucke-Grauls C., van den Brule A., Koeleman H. Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J Clin Microbiol. 1995 Jun;33(6):1537–1547. doi: 10.1128/jcm.33.6.1537-1547.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]