Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Dec;35(12):3116–3121. doi: 10.1128/jcm.35.12.3116-3121.1997

Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization.

S H Goh 1, Z Santucci 1, W E Kloos 1, M Faltyn 1, C G George 1, D Driedger 1, S M Hemmingsen 1
PMCID: PMC230133  PMID: 9399505

Abstract

A previous study (S. H. Goh et al., J. Clin. Microbiol. 34:818-823, 1996) demonstrated that a 600-bp region of the chaperonin 60 (Cpn60) genes from various bacterial isolates could be amplified by PCR with a pair of degenerate primers and that the products could be used as species-specific probes for Staphylococcus aureus, S. epidermidis, S. haemolyticus, S. lugdunensis, S. saprophyticus, and S. schleiferi. To further validate the utility of bacterial Cpn60 genes as universal targets for bacterial identification (ID), reverse checkerboard chemiluminescent hybridization experiments were performed with DNA probes from 34 different Staphylococcus species and subspecies. With the exception of probes from the Cpn60 genes of S. intermedius and S. delphini, which cross hybridized, all were species specific. Two subspecies of both S. capitis and S. cohnii were differentiated from one another, while DNAs from the two S. schleiferi subspecies cross hybridized. When 40 known Staphylococcus isolates were tested in a blind experiment by the Cpn60 gene method, 36 strains, representing six species and one subspecies (S. sciuri, S. caseolyticus, S. hominis, S. warneri, S. hyicus, S. haemolyticus, and S. capitis subsp. ureolyticus), were correctly identified. DNA from the four remaining isolates, known to be S. hyicus bovine strains, failed to hybridize to DNA from the S. hyicus target strain or any other Staphylococcus species. However, DNAs from these S. hyicus isolates did cross hybridize with each other. New DNA sequence data and evidence from previous studies suggest some genetic divergence between the two groups of S. hyicus isolates. Our results demonstrate that this Cpn60 gene-based ID method has the potential to be a basic method for bacterial ID. Studies are in progress to further validate the utility of this Cpn60 gene system for ID of Staphylococcus and other genera, including those of slow-growing microorganisms.

Full Text

The Full Text of this article is available as a PDF (179.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee S. N., Emori T. G., Culver D. H., Gaynes R. P., Jarvis W. R., Horan T., Edwards J. R., Tolson J., Henderson T., Martone W. J. Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989. National Nosocomial Infections Surveillance System. Am J Med. 1991 Sep 16;91(3B):86S–89S. doi: 10.1016/0002-9343(91)90349-3. [DOI] [PubMed] [Google Scholar]
  2. Bialkowska-Hobrzanska H., Harry V., Jaskot D., Hammerberg O. Typing of coagulase-negative staphylococci by Southern hybridization of chromosomal DNA fingerprints using a ribosomal RNA probe. Eur J Clin Microbiol Infect Dis. 1990 Aug;9(8):588–594. doi: 10.1007/BF01967213. [DOI] [PubMed] [Google Scholar]
  3. De Buyser M. L., Morvan A., Aubert S., Dilasser F., el Solh N. Evaluation of a ribosomal RNA gene probe for the identification of species and subspecies within the genus Staphylococcus. J Gen Microbiol. 1992 May;138(5):889–899. doi: 10.1099/00221287-138-5-889. [DOI] [PubMed] [Google Scholar]
  4. De Buyser M. L., Morvan A., Grimont F., el Solh N. Characterization of Staphylococcus species by ribosomal RNA gene restriction patterns. J Gen Microbiol. 1989 Apr;135(4):989–999. doi: 10.1099/00221287-135-4-989. [DOI] [PubMed] [Google Scholar]
  5. Fernandes A. P., Perl T. M., Herwaldt L. A. Staphylococcus cohnii: a case report on an unusual pathogen. Clin Perform Qual Health Care. 1996 Apr-Jun;4(2):107–109. [PubMed] [Google Scholar]
  6. Goh S. H., Potter S., Wood J. O., Hemmingsen S. M., Reynolds R. P., Chow A. W. HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol. 1996 Apr;34(4):818–823. doi: 10.1128/jcm.34.4.818-823.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grant C. E., Sewell D. L., Pfaller M., Bumgardner R. V., Williams J. A. Evaluation of two commercial systems for identification of coagulase-negative staphylococci to species level. Diagn Microbiol Infect Dis. 1994 Jan;18(1):1–5. doi: 10.1016/0732-8893(94)90126-0. [DOI] [PubMed] [Google Scholar]
  8. Ieven M., Verhoeven J., Pattyn S. R., Goossens H. Rapid and economical method for species identification of clinically significant coagulase-negative staphylococci. J Clin Microbiol. 1995 May;33(5):1060–1063. doi: 10.1128/jcm.33.5.1060-1063.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kleeman K. T., Bannerman T. L., Kloos W. E. Species distribution of coagulase-negative staphylococcal isolates at a community hospital and implications for selection of staphylococcal identification procedures. J Clin Microbiol. 1993 May;31(5):1318–1321. doi: 10.1128/jcm.31.5.1318-1321.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kloos W. E., Bannerman T. L. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev. 1994 Jan;7(1):117–140. doi: 10.1128/cmr.7.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lämmler C. Characterization of Staphylococcus hyicus with the ATB 32 Staph system and with conventional tests. J Clin Microbiol. 1991 Jun;29(6):1221–1224. doi: 10.1128/jcm.29.6.1221-1224.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pantůcek R., Götz F., Doskar J., Rosypal S. Genomic variability of Staphylococcus aureus and the other coagulase-positive Staphylococcus species estimated by macrorestriction analysis using pulsed-field gel electrophoresis. Int J Syst Bacteriol. 1996 Jan;46(1):216–222. doi: 10.1099/00207713-46-1-216. [DOI] [PubMed] [Google Scholar]
  13. Perl T. M., Rhomberg P. R., Bale M. J., Fuchs P. C., Jones R. N., Koontz F. P., Pfaller M. A. Comparison of identification systems for Staphylococcus epidermidis and other coagulase-negative Staphylococcus species. Diagn Microbiol Infect Dis. 1994 Mar;18(3):151–155. doi: 10.1016/0732-8893(94)90084-1. [DOI] [PubMed] [Google Scholar]
  14. Pfaller M. A., Herwaldt L. A. Laboratory, clinical, and epidemiological aspects of coagulase-negative staphylococci. Clin Microbiol Rev. 1988 Jul;1(3):281–299. doi: 10.1128/cmr.1.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Phillips W. E., Jr, Kloos W. E. Identification of coagulase-positive Staphylococcus intermedius and Staphylococcus hyicus subsp. hyicus isolates from veterinary clinical specimens. J Clin Microbiol. 1981 Dec;14(6):671–673. doi: 10.1128/jcm.14.6.671-673.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thomson-Carter F. M., Carter P. E., Pennington T. H. Differentiation of staphylococcal species and strains by ribosomal RNA gene restriction patterns. J Gen Microbiol. 1989 Jul;135(7):2093–2097. doi: 10.1099/00221287-135-7-2093. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES