Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 Dec;35(12):3171–3180. doi: 10.1128/jcm.35.12.3171-3180.1997

Comparison of use of phenotypic and genotypic characteristics for identification of species of the anamorph genus Candida and related teleomorph yeast species.

G N Latouche 1, H M Daniel 1, O C Lee 1, T G Mitchell 1, T C Sorrell 1, W Meyer 1
PMCID: PMC230143  PMID: 9399515

Abstract

A total of 49 type and neotype isolates and 32 clinical isolates of the anamorph genus Candida and related teleomorph genera were obtained from different culture collections and clinical laboratories. Isolates were subjected to two phenotypic methods of identification, Vitek yeast biochemical card (YBC) and API ID 32C, both based on carbohydrate assimilation, and one genotypic method, PCR fingerprinting, based on the detection of DNA polymorphisms between minisatellite-specific sequences with the primer M13 (5' GAGGGTGGCGGTTCT 3'). The correct identification of a strain at the Centraalbureau voor Schimmelcultures was used as the gold standard for the identification of an isolate. When the study was restricted to species included in the respective biochemical databases, the Vitek YBC and API ID 32C systems performed adequately with positive identification rates of 87.3 and 76.8%, respectively. When uncommon species were added to the study, several of which are not included in the databases, the identification efficiencies were 76.5 and 77.5%, respectively. By comparison, all isolates were correctly identified by PCR fingerprinting, with 63 reference species profiles in the databank. Sufficient polymorphisms among the total set of banding patterns were observed, with adequate similarity in the major patterns obtained from a given species, to allow each isolate to be assigned unambiguously to a particular species. In addition, variations in minor bands allowed for differentiation to the strain level. PCR fingerprinting was found to be rapid, reproducible, and more cost-effective than either biochemical approach. Our results provide reference laboratories with an improved identification method for yeasts based on genotypic rather than phenotypic markers.

Full Text

The Full Text of this article is available as a PDF (871.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S., Müller C. R., Epplen J. T. DNA finger printing by oligonucleotide probes specific for simple repeats. Hum Genet. 1986 Nov;74(3):239–243. doi: 10.1007/BF00282541. [DOI] [PubMed] [Google Scholar]
  2. Barrett-Bee K., Hayes Y., Wilson R. G., Ryley J. F. A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol. 1985 May;131(5):1217–1221. doi: 10.1099/00221287-131-5-1217. [DOI] [PubMed] [Google Scholar]
  3. Fenn J. P., Segal H., Barland B., Denton D., Whisenant J., Chun H., Christofferson K., Hamilton L., Carroll K. Comparison of updated Vitek Yeast Biochemical Card and API 20C yeast identification systems. J Clin Microbiol. 1994 May;32(5):1184–1187. doi: 10.1128/jcm.32.5.1184-1187.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ghannoum M. A. Is antifungal susceptibility testing useful in guiding fluconazole therapy? Clin Infect Dis. 1996 May;22 (Suppl 2):S161–S165. doi: 10.1093/clinids/22.supplement_2.s161. [DOI] [PubMed] [Google Scholar]
  5. Hazen K. C. New and emerging yeast pathogens. Clin Microbiol Rev. 1995 Oct;8(4):462–478. doi: 10.1128/cmr.8.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ibrahim A. S., Mirbod F., Filler S. G., Banno Y., Cole G. T., Kitajima Y., Edwards J. E., Jr, Nozawa Y., Ghannoum M. A. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun. 1995 May;63(5):1993–1998. doi: 10.1128/iai.63.5.1993-1998.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Land G. A., Salkin I. F., el-Zaatari M., McGinnis M. R., Hashem G. Evaluation of the Baxter-MicroScan 4-hour enzyme-based yeast identification system. J Clin Microbiol. 1991 Apr;29(4):718–722. doi: 10.1128/jcm.29.4.718-722.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Land G., Stotler R., Land K., Staneck J. Update and evaluation of the AutoMicrobic yeast identification system. J Clin Microbiol. 1984 Oct;20(4):649–652. doi: 10.1128/jcm.20.4.649-652.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lieckfeldt E., Meyer W., Börner T. Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. J Basic Microbiol. 1993;33(6):413–425. doi: 10.1002/jobm.3620330609. [DOI] [PubMed] [Google Scholar]
  10. Meyer W., Latouche G. N., Daniel H. M., Thanos M., Mitchell T. G., Yarrow D., Schönian G., Sorrell T. C. Identification of pathogenic yeasts of the imperfect genus Candida by polymerase chain reaction fingerprinting. Electrophoresis. 1997 Aug;18(9):1548–1559. doi: 10.1002/elps.1150180911. [DOI] [PubMed] [Google Scholar]
  11. Meyer W., Lieckfeldt E., Kuhls K., Freedman E. Z., Börner T., Mitchell T. G. DNA- and PCR-fingerprinting in fungi. EXS. 1993;67:311–320. doi: 10.1007/978-3-0348-8583-6_28. [DOI] [PubMed] [Google Scholar]
  12. Meyer W., Mitchell T. G., Freedman E. Z., Vilgalys R. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J Clin Microbiol. 1993 Sep;31(9):2274–2280. doi: 10.1128/jcm.31.9.2274-2280.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meyer W., Mitchell T. G. Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: strain variation in Cryptococcus neoformans. Electrophoresis. 1995 Sep;16(9):1648–1656. doi: 10.1002/elps.11501601273. [DOI] [PubMed] [Google Scholar]
  14. Oblack D. L., Rhodes J. C., Martin W. J. Clinical evaluation of the AutoMicrobic system Yeast Biochemical Card for rapid identification of medically important yeasts. J Clin Microbiol. 1981 Feb;13(2):351–355. doi: 10.1128/jcm.13.2.351-355.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rex J. H., Pfaller M. A., Barry A. L., Nelson P. W., Webb C. D. Antifungal susceptibility testing of isolates from a randomized, multicenter trial of fluconazole versus amphotericin B as treatment of nonneutropenic patients with candidemia. NIAID Mycoses Study Group and the Candidemia Study Group. Antimicrob Agents Chemother. 1995 Jan;39(1):40–44. doi: 10.1128/aac.39.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rohm H., Lechner F., Lehner M. Evaluation of the API ATB 32C system for the rapid identification of foodborne yeasts. Int J Food Microbiol. 1990 Dec;11(3-4):215–223. doi: 10.1016/0168-1605(90)90014-v. [DOI] [PubMed] [Google Scholar]
  17. Schönian G., Meusel O., Tietz H. J., Meyer W., Gräser Y., Tausch I., Presber W., Mitchell T. G. Identification of clinical strains of Candida albicans by DNA fingerprinting with the polymerase chain reaction. Mycoses. 1993 May-Jun;36(5-6):171–179. doi: 10.1111/j.1439-0507.1993.tb00746.x. [DOI] [PubMed] [Google Scholar]
  18. St Germain G., Beauchesne D. Evaluation of the MicroScan Rapid Yeast Identification panel. J Clin Microbiol. 1991 Oct;29(10):2296–2299. doi: 10.1128/jcm.29.10.2296-2299.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thanos M., Schonian G., Meyer W., Schweynoch C., Graser Y., Mitchell T. G., Presber W., Tietz H. J. Rapid identification of Candida species by DNA fingerprinting with PCR. J Clin Microbiol. 1996 Mar;34(3):615–621. doi: 10.1128/jcm.34.3.615-621.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Török T., King A. D., Jr Comparative study on the identification of food-borne yeasts. Appl Environ Microbiol. 1991 Apr;57(4):1207–1212. doi: 10.1128/aem.57.4.1207-1212.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vassart G., Georges M., Monsieur R., Brocas H., Lequarre A. S., Christophe D. A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science. 1987 Feb 6;235(4789):683–684. doi: 10.1126/science.2880398. [DOI] [PubMed] [Google Scholar]
  22. Williams D. W., Wilson M. J., Lewis M. A., Potts A. J. Identification of Candida species by PCR and restriction fragment length polymorphism analysis of intergenic spacer regions of ribosomal DNA. J Clin Microbiol. 1995 Sep;33(9):2476–2479. doi: 10.1128/jcm.33.9.2476-2479.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. el-Zaatari M., Pasarell L., McGinnis M. R., Buckner J., Land G. A., Salkin I. F. Evaluation of the updated Vitek yeast identification data base. J Clin Microbiol. 1990 Sep;28(9):1938–1941. doi: 10.1128/jcm.28.9.1938-1941.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES