Abstract
Fecal microflora and lactate concentrations in blood and feces obtained from a patient (a 5 year-old boy) with short-bowel syndrome (SBS) were compared during acidosis to results for the normal condition (no SBS symptoms). The taxonomical position of the lactobacilli found predominantly in the feces sample obtained 2 days before the fifth attack was also studied. The D-lactate level in serum obtained 1 day after the fourth attack was 10-fold higher than that for the normal condition, although there was not a great difference in L-lactate levels. D-Lactate (3.91 mM) and L-lactate (2.86 mM) were also detected in the feces samples collected 2 days before the fifth attack, while no lactate was detected in the feces sample for the normal condition. The counts of total fecal bacteria, especially anaerobic bacteria such as members of the family Bacteroidaceae, were found to be low. The counts of lactobacilli and the total population of lactobacilli relative to total fecal bacteria in the feces 2 days before the fifth attack (40.4%) were extremely high. In this case, a majority of the lactobacilli were D-lactate producers as determined by homolactic fermentation. These lactobacilli were identified as Lactobacillus delbrueckii subsp. lactis. The percentages of bifidobacteria relative to total fecal bacteria in feces samples obtained both 2 days before the fifth attack (50.9%) and for normal condition (61.9%) were also high, although these bacteria were L-lactate producers. In the feces samples for the normal condition, the D-lactate producers decreased to less than 10(9) per g, while the counts of L- or DL-lactate producers were 100-fold higher than the numbers in feces samples obtained 2 days before the fifth attack. These results suggested that an increase in the level of D-lactate producers, such as L. delbrueckii subsp. lactis, in the colon may be associated with the clinical expression of metabolic acidosis.
Full Text
The Full Text of this article is available as a PDF (137.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Battles J. K., Williamson J. C., Pike K. M., Gorelick P. L., Ward J. M., Gonda M. A. Diagnostic assay for Helicobacter hepaticus based on nucleotide sequence of its 16S rRNA gene. J Clin Microbiol. 1995 May;33(5):1344–1347. doi: 10.1128/jcm.33.5.1344-1347.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bongaerts G., Tolboom J., Naber T., Bakkeren J., Severijnen R., Willems H. D-lactic acidemia and aciduria in pediatric and adult patients with short bowel syndrome. Clin Chem. 1995 Jan;41(1):107–110. [PubMed] [Google Scholar]
- Bustos D., Pons S., Pernas J. C., Gonzalez H., Caldarini M. I., Ogawa K., De Paula J. A. Fecal lactate and short bowel syndrome. Dig Dis Sci. 1994 Nov;39(11):2315–2319. doi: 10.1007/BF02087644. [DOI] [PubMed] [Google Scholar]
- Cammack R. Assay, purification and properties of mammalian D-2-hydroxy acid dehydrogenase. Biochem J. 1969 Oct;115(1):55–64. doi: 10.1042/bj1150055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coronado B. E., Opal S. M., Yoburn D. C. Antibiotic-induced D-lactic acidosis. Ann Intern Med. 1995 Jun 1;122(11):839–842. doi: 10.7326/0003-4819-122-11-199506010-00005. [DOI] [PubMed] [Google Scholar]
- Ehrmann M., Ludwig W., Schleifer K. H. Reverse dot blot hybridization: a useful method for the direct identification of lactic acid bacteria in fermented food. FEMS Microbiol Lett. 1994 Apr 1;117(2):143–149. doi: 10.1111/j.1574-6968.1994.tb06756.x. [DOI] [PubMed] [Google Scholar]
- Ezaki T., Hashimoto Y., Takeuchi N., Yamamoto H., Liu S. L., Miura H., Matsui K., Yabuuchi E. Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol. 1988 Sep;26(9):1708–1713. doi: 10.1128/jcm.26.9.1708-1713.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finegold S. M., Sutter V. L., Sugihara P. T., Elder H. A., Lehmann S. M., Phillips R. L. Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am J Clin Nutr. 1977 Nov;30(11):1781–1792. doi: 10.1093/ajcn/30.11.1781. [DOI] [PubMed] [Google Scholar]
- Halperin M. L., Kamel K. S. D-lactic acidosis: turning sugar into acids in the gastrointestinal tract. Kidney Int. 1996 Jan;49(1):1–8. doi: 10.1038/ki.1996.1. [DOI] [PubMed] [Google Scholar]
- Hove H., Mortensen P. B. Colonic lactate metabolism and D-lactic acidosis. Dig Dis Sci. 1995 Feb;40(2):320–330. doi: 10.1007/BF02065417. [DOI] [PubMed] [Google Scholar]
- Kadakia S. C. D-lactic acidosis in a patient with jejunoileal bypass. J Clin Gastroenterol. 1995 Mar;20(2):154–156. doi: 10.1097/00004836-199503000-00019. [DOI] [PubMed] [Google Scholar]
- Kaneko T., Kurihara H. Digoxigenin-labeled deoxyribonucleic acid probes for the enumeration of bifidobacteria in fecal samples. J Dairy Sci. 1997 Jul;80(7):1254–1259. doi: 10.3168/jds.S0022-0302(97)76054-5. [DOI] [PubMed] [Google Scholar]
- Kaneko T., Mori H., Iwata M., Meguro S. Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J Dairy Sci. 1994 Feb;77(2):393–404. doi: 10.3168/jds.S0022-0302(94)76965-4. [DOI] [PubMed] [Google Scholar]
- Kreader C. A. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl Environ Microbiol. 1995 Apr;61(4):1171–1179. doi: 10.1128/aem.61.4.1171-1179.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitsuoka T., Sega T., Yamamoto S. Eine verbesserte Methodik der qualitativen und quantitativen Analyse der Darmflora von Menschen und Tieren. Zentralbl Bakteriol Orig. 1965 Mar;195(4):455–469. [PubMed] [Google Scholar]
- Mitsuoka T. Vergleichende Untersuchungen über die Laktobazillen aus den Faeces von Menschen, Schweinen und Hühnern. Zentralbl Bakteriol Orig. 1969 May;210(1):32–51. [PubMed] [Google Scholar]
- Moore W. E., Holdeman L. V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol. 1974 May;27(5):961–979. doi: 10.1128/am.27.5.961-979.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlmutter D. H., Boyle J. T., Campos J. M., Egler J. M., Watkins J. B. D-Lactic acidosis in children: an unusual metabolic complication of small bowel resection. J Pediatr. 1983 Feb;102(2):234–238. doi: 10.1016/s0022-3476(83)80527-7. [DOI] [PubMed] [Google Scholar]
- Pheasant H., Bursk A., Goldfarb J., Azen S. P., Weiss J. N., Borelli L. Amitriptyline and chronic low-back pain. A randomized double-blind crossover study. Spine (Phila Pa 1976) 1983 Jul-Aug;8(5):552–557. doi: 10.1097/00007632-198307000-00012. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Walsh P. S., Levenson C. H., Erlich H. A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6230–6234. doi: 10.1073/pnas.86.16.6230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salminen S., Isolauri E., Onnela T. Gut flora in normal and disordered states. Chemotherapy. 1995;41 (Suppl 1):5–15. doi: 10.1159/000239391. [DOI] [PubMed] [Google Scholar]
- Satoh T., Narisawa K., Konno T., Katoh T., Fujiyama J., Tomoe A., Metoki K., Hayasaka K., Tada K., Ishibashi M. D-lactic acidosis in two patients with short bowel syndrome: bacteriological analyses of the fecal flora. Eur J Pediatr. 1982 Jul;138(4):324–326. doi: 10.1007/BF00442509. [DOI] [PubMed] [Google Scholar]
- Taguchi H., Ohta T. D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarum. J Biol Chem. 1991 Jul 5;266(19):12588–12594. [PubMed] [Google Scholar]
- Vogel R. F., Böcker G., Stolz P., Ehrmann M., Fanta D., Ludwig W., Pot B., Kersters K., Schleifer K. H., Hammes W. P. Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int J Syst Bacteriol. 1994 Apr;44(2):223–229. doi: 10.1099/00207713-44-2-223. [DOI] [PubMed] [Google Scholar]
- Wang R. F., Cao W. W., Cerniglia C. E. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol. 1996 Apr;62(4):1242–1247. doi: 10.1128/aem.62.4.1242-1247.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Gutell R., Gupta R., Noller H. F. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev. 1983 Dec;47(4):621–669. doi: 10.1128/mr.47.4.621-669.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]