Abstract
An evaluation was undertaken to determine the optimal method for testing the susceptibilities of 100 clinical isolates and two reference strains of Enterococcus spp. to vancomycin in vitro. Six testing methods were studied by using the following media and incubation times: agar screen with the Synergy Quad Plate (Remel, Lenexa, Kans.), an in-house-prepared brain heart infusion (BHI) agar plate, and an in-house-prepared Mueller-Hinton (MH) agar plate, all incubated for 24 or 48 h; broth microdilution (Sensititre Just One Strip; AccuMed International, Inc., West Lake, Ohio) with BHI or cation-adjusted MH broth incubated for 24 or 48 h; agar dilution with BHI or MH agar incubated for 24 or 48 h; epsilometer test (E test; AB BioDisk, Solna, Sweden) with BHI or MH agar incubated for 24 or 48 h; disk diffusion with BHI or MH agar incubated for 24 or 48 h; and the automated Vitek method with the gram-positive susceptibility Staphylococcus aureus card and R02.03 software (bioMerieux, Inc., Hazelwood, Mo.). Growth failures occurred with MH media (n = 6) but not with BHI media. One growth failure occurred with the Vitek method. Results for each testing method for each Enterococcus strain were interpreted as susceptible, intermediate, or resistant according to current National Committee for Clinical Laboratory Standards (NCCLS) criteria and compared to the vancomycin resistance genotype (i.e., vanA, vanB, vanC-1, or vanC-2/3). For all methods, extension of the incubation time from 24 h to 48 h either produced no difference in the results or gave poorer results. The following methods produced no very major or major interpretive errors: broth microdilution with BHI media incubated for 24 h, agar dilution with BHI media incubated for 24 or 48 h, and E test with BHI media incubated for 24 or 48 h. Unacceptable frequencies of very major errors (> 1%) occurred with all methods for which MH media were used. Minor interpretive errors were frequent with all methods. These minor interpretive errors also occurred most frequently with Enterococcus strains with vanC genes, which encoded low-level vancomycin resistance (MIC < or = 8 microg/ml), as opposed to Enterococcus strains which possessed vanA or vanB genes, which encoded higher-level vancomycin resistance (MIC > or = 64 microg/ml). Modification of NCCLS breakpoints, especially for motile Enterococcus spp. (E. casseliflavus, E. flavescens, and E. gallinarum), may resolve this problem; however, in the current study, one E. faecalis strain and one E. faecium strain carried only the vanC gene. The agar screen method may also require reformulation. The current agar screen plate contains 6 microg of vancomycin per ml, which may not detect all low-level resistance associated with vanC genotypes. Nevertheless, the clinical significance of this low-level vancomycin resistance remains unknown.
Full Text
The Full Text of this article is available as a PDF (154.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Evers S., Reynolds P. E., Courvalin P. Sequence of the vanB and ddl genes encoding D-alanine:D-lactate and D-alanine:D-alanine ligases in vancomycin-resistant Enterococcus faecalis V583. Gene. 1994 Mar 11;140(1):97–102. doi: 10.1016/0378-1119(94)90737-4. [DOI] [PubMed] [Google Scholar]
- Evers S., Sahm D. F., Courvalin P. The vanB gene of vancomycin-resistant Enterococcus faecalis V583 is structurally related to genes encoding D-Ala:D-Ala ligases and glycopeptide-resistance proteins VanA and VanC. Gene. 1993 Feb 14;124(1):143–144. doi: 10.1016/0378-1119(93)90779-3. [DOI] [PubMed] [Google Scholar]
- Free L., Sahm D. F. Investigation of the reformulated Remel Synergy Quad plate for detection of high-level aminoglycoside and vancomycin resistance among enterococci. J Clin Microbiol. 1995 Jun;33(6):1643–1645. doi: 10.1128/jcm.33.6.1643-1645.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Navarro F., Courvalin P. Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob Agents Chemother. 1994 Aug;38(8):1788–1793. doi: 10.1128/aac.38.8.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel R., Uhl J. R., Kohner P., Hopkins M. K., Cockerill F. R., 3rd Multiplex PCR detection of vanA, vanB, vanC-1, and vanC-2/3 genes in enterococci. J Clin Microbiol. 1997 Mar;35(3):703–707. doi: 10.1128/jcm.35.3.703-707.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz J. E., Sahm D. F. Reliability of the E test for detection of ampicillin, vancomycin, and high-level aminoglycoside resistance in Enterococcus spp. J Clin Microbiol. 1993 Dec;31(12):3336–3339. doi: 10.1128/jcm.31.12.3336-3339.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swenson J. M., Clark N. C., Ferraro M. J., Sahm D. F., Doern G., Pfaller M. A., Reller L. B., Weinstein M. P., Zabransky R. J., Tenover F. C. Development of a standardized screening method for detection of vancomycin-resistant enterococci. J Clin Microbiol. 1994 Jul;32(7):1700–1704. doi: 10.1128/jcm.32.7.1700-1704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenover F. C., Swenson J. M., O'Hara C. M., Stocker S. A. Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. J Clin Microbiol. 1995 Jun;33(6):1524–1527. doi: 10.1128/jcm.33.6.1524-1527.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Horn K. G., Gedris C. A., Rodney K. M., Mitchell J. B. Evaluation of commercial vancomycin agar screen plates for detection of vancomycin-resistant enterococci. J Clin Microbiol. 1996 Aug;34(8):2042–2044. doi: 10.1128/jcm.34.8.2042-2044.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willey B. M., Kreiswirth B. N., Simor A. E., Faur Y., Patel M., Williams G., Low D. E. Identification and characterization of multiple species of vancomycin-resistant enterococci, including an evaluation of Vitek software version 7.1. J Clin Microbiol. 1993 Oct;31(10):2777–2779. doi: 10.1128/jcm.31.10.2777-2779.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willey B. M., Kreiswirth B. N., Simor A. E., Willaims G., Scriver S. R., Phillips A., Low D. E. Detection of vancomycin resistance in Enterococcus species. J Clin Microbiol. 1992 Jul;30(7):1621–1624. doi: 10.1128/jcm.30.7.1621-1624.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zabransky R. J., Di Nuzzo A. R., Huber M. B., Woods G. L. Detection of vancomycin resistance in enterococci by the Vitek AMS system. Diagn Microbiol Infect Dis. 1994 Oct;20(2):113–116. doi: 10.1016/0732-8893(94)90102-3. [DOI] [PubMed] [Google Scholar]
- Zabransky R. J., Dinuzzo A. R., Woods G. L. Detection of vancomycin resistance in enterococci by the Alamar MIC system. J Clin Microbiol. 1995 Apr;33(4):791–793. doi: 10.1128/jcm.33.4.791-793.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]