Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):8983–8990. doi: 10.1128/jvi.71.12.8983-8990.1997

Specific in vitro cleavage of a Leishmania virus capsid-RNA-dependent RNA polymerase polyprotein by a host cysteine-like protease.

Y T Ro 1, S M Scheffter 1, J L Patterson 1
PMCID: PMC230198  PMID: 9371554

Abstract

Antibodies raised against baculovirus-expressed RNA-dependent RNA polymerase (RDRP) recognized a 95-kDa antigen and two smaller proteins in sucrose-purified Leishmania virus particles isolated from infected parasites. The 95-kDa antigen is similar in size to one predicted by translation of the RDRP open reading frame (ORF) alone. In an effort to reconcile in vitro observations of translational frameshifting on Leishmania RNA virus 1-4 transcripts, we have developed an in vitro cleavage assay system to explore the possibility that the fusion polyprotein is proteolytically processed. We show that coincubation a synthetic Cap-Pol fusion protein with lysates from Leishmania parasites yields major cleavage products similar in size to those encoded by the individual capsid and RDRP genes as well as the antigens detected in vivo. The major 82- and 95-kDa major cleavage products are specifically immunoprecipitated by capsid- or polymerase-specific antibodies, respectively, showing that cleavage occurs at or near the junction of the two functional domains. Protease inhibitor studies suggest that a cysteine-like protease is responsible for cleavage in the in vitro assay system developed here. From these results, we suggest that failure to detect a capsid-polymerase fusion protein produced by translational frameshifting in vivo may be due to specific proteolytic processing.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharya J., Dey R., Datta S. C. Calcium dependent thiol protease caldonopain and its specific endogenous inhibitor in Leishmania donovani. Mol Cell Biochem. 1993 Sep 8;126(1):9–16. doi: 10.1007/BF01772203. [DOI] [PubMed] [Google Scholar]
  2. Bruenn J. A. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res. 1991 Jan 25;19(2):217–226. doi: 10.1093/nar/19.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cadd T. L., Keenan M. C., Patterson J. L. Detection of Leishmania RNA virus 1 proteins. J Virol. 1993 Sep;67(9):5647–5650. doi: 10.1128/jvi.67.9.5647-5650.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cadd T. L., Patterson J. L. Synthesis of viruslike particles by expression of the putative capsid protein of Leishmania RNA virus in a recombinant baculovirus expression system. J Virol. 1994 Jan;68(1):358–365. doi: 10.1128/jvi.68.1.358-365.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diamond M. E., Dowhanick J. J., Nemeroff M. E., Pietras D. F., Tu C. L., Bruenn J. A. Overlapping genes in a yeast double-stranded RNA virus. J Virol. 1989 Sep;63(9):3983–3990. doi: 10.1128/jvi.63.9.3983-3990.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dougherty W. G., Semler B. L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993 Dec;57(4):781–822. doi: 10.1128/mr.57.4.781-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubay J. W., Dubay S. R., Shin H. J., Hunter E. Analysis of the cleavage site of the human immunodeficiency virus type 1 glycoprotein: requirement of precursor cleavage for glycoprotein incorporation. J Virol. 1995 Aug;69(8):4675–4682. doi: 10.1128/jvi.69.8.4675-4682.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujimura T., Wickner R. B. Replicase of L-A virus-like particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J Biol Chem. 1988 Jan 5;263(1):454–460. [PubMed] [Google Scholar]
  9. Heidner H. W., McKnight K. L., Davis N. L., Johnston R. E. Lethality of PE2 incorporation into Sindbis virus can be suppressed by second-site mutations in E3 and E2. J Virol. 1994 Apr;68(4):2683–2692. doi: 10.1128/jvi.68.4.2683-2692.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howard M. K., Pharoah M. M., Ashall F., Miles M. A. Human urine stimulates growth of Leishmania in vitro. Trans R Soc Trop Med Hyg. 1991 Jul-Aug;85(4):477–479. doi: 10.1016/0035-9203(91)90226-o. [DOI] [PubMed] [Google Scholar]
  11. Huang S., Ghabrial S. A. Organization and expression of the double-stranded RNA genome of Helminthosporium victoriae 190S virus, a totivirus infecting a plant pathogenic filamentous fungus. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12541–12546. doi: 10.1073/pnas.93.22.12541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacks T., Madhani H. D., Masiarz F. R., Varmus H. E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988 Nov 4;55(3):447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988 Jan 21;331(6153):280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  14. Kay J., Dunn B. M. Viral proteinases: weakness in strength. Biochim Biophys Acta. 1990 Jan 30;1048(1):1–18. doi: 10.1016/0167-4781(90)90015-t. [DOI] [PubMed] [Google Scholar]
  15. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kozak M. Bifunctional messenger RNAs in eukaryotes. Cell. 1986 Nov 21;47(4):481–483. doi: 10.1016/0092-8674(86)90609-4. [DOI] [PubMed] [Google Scholar]
  17. Kräusslich H. G., Wimmer E. Viral proteinases. Annu Rev Biochem. 1988;57:701–754. doi: 10.1146/annurev.bi.57.070188.003413. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lee S. E., Suh J. M., Scheffter S., Patterson J. L., Chung I. K. Identification of a ribosomal frameshift in Leishmania RNA virus 1-4. J Biochem. 1996 Jul;120(1):22–25. doi: 10.1093/oxfordjournals.jbchem.a021387. [DOI] [PubMed] [Google Scholar]
  20. MacBeth K. J., Patterson J. L. The short transcript of Leishmania RNA virus is generated by RNA cleavage. J Virol. 1995 Jun;69(6):3458–3464. doi: 10.1128/jvi.69.6.3458-3464.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–853. doi: 10.1146/annurev.mi.47.100193.004133. [DOI] [PubMed] [Google Scholar]
  22. Moulard M., Montagnier L., Bahraoui E. Effects of calcium ions on proteolytic processing of HIV-1 gp160 precursor and on cell fusion. FEBS Lett. 1994 Feb 7;338(3):281–284. doi: 10.1016/0014-5793(94)80284-x. [DOI] [PubMed] [Google Scholar]
  23. Patterson J. L. The current status of Leishmania RNA virus I. Parasitol Today. 1993 Apr;9(4):135–136. doi: 10.1016/0169-4758(93)90178-i. [DOI] [PubMed] [Google Scholar]
  24. Robertson C. D., Coombs G. H. Cathepsin B-like cysteine proteases of Leishmania mexicana. Mol Biochem Parasitol. 1993 Dec;62(2):271–279. doi: 10.1016/0166-6851(93)90116-f. [DOI] [PubMed] [Google Scholar]
  25. Sakanari J. A., Nadler S. A., Chan V. J., Engel J. C., Leptak C., Bouvier J. Leishmania major: comparison of the cathepsin L- and B-like cysteine protease genes with those of other trypanosomatids. Exp Parasitol. 1997 Jan;85(1):63–76. doi: 10.1006/expr.1996.4116. [DOI] [PubMed] [Google Scholar]
  26. Scheffter S. M., Ro Y. T., Chung I. K., Patterson J. L. The complete sequence of Leishmania RNA virus LRV2-1, a virus of an Old World parasite strain. Virology. 1995 Sep 10;212(1):84–90. doi: 10.1006/viro.1995.1456. [DOI] [PubMed] [Google Scholar]
  27. Scheffter S., Widmer G., Patterson J. L. Complete sequence of Leishmania RNA virus 1-4 and identification of conserved sequences. Virology. 1994 Mar;199(2):479–483. doi: 10.1006/viro.1994.1149. [DOI] [PubMed] [Google Scholar]
  28. Shaw E. Cysteinyl proteinases and their selective inactivation. Adv Enzymol Relat Areas Mol Biol. 1990;63:271–347. doi: 10.1002/9780470123096.ch5. [DOI] [PubMed] [Google Scholar]
  29. Skalka A. M. Retroviral proteases: first glimpses at the anatomy of a processing machine. Cell. 1989 Mar 24;56(6):911–913. doi: 10.1016/0092-8674(89)90621-1. [DOI] [PubMed] [Google Scholar]
  30. Stuart K. D., Weeks R., Guilbride L., Myler P. J. Molecular organization of Leishmania RNA virus 1. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8596–8600. doi: 10.1073/pnas.89.18.8596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tarr P. I., Aline R. F., Jr, Smiley B. L., Scholler J., Keithly J., Stuart K. LR1: a candidate RNA virus of Leishmania. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9572–9575. doi: 10.1073/pnas.85.24.9572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang A. L., Yang H. M., Shen K. A., Wang C. C. Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation frameshift. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8595–8599. doi: 10.1073/pnas.90.18.8595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Widmer G., Patterson J. L. Genomic structure and RNA polymerase activity in Leishmania virus. J Virol. 1991 Aug;65(8):4211–4215. doi: 10.1128/jvi.65.8.4211-4215.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yu D., Wang C. C., Wang A. L. Maturation of giardiavirus capsid protein involves posttranslational proteolytic processing by a cysteine protease. J Virol. 1995 May;69(5):2825–2830. doi: 10.1128/jvi.69.5.2825-2830.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES