Abstract
Factors that modulate the placement of primer tRNA(3Lys) onto the viral RNA genome in human immunodeficiency virus type 1 (HIV-1) were investigated through analysis of reverse-transcribed products that are extended from the tRNA(3Lys) primer. Mutations were introduced into the HIV-1 pol gene to result in the appearance of a stop codon in the open reading frame of the reverse transcriptase (RT) gene. These constructs, BH10-RT1 and BH10-RT2, yielded viruses with truncated Pol proteins. Alternatively, we altered the sequences involved in frameshifting by generating the construct BH10-FS. With each of these mutated viruses, we found that the primer tRNA(3Lys) that was placed onto viral genomic RNA was present in an unextended state. In contrast, as expected, tRNA(3Lys) in the case of wild-type BH10 virus had been extended by 2 bases. Furthermore, the amount of tRNA(3Lys) that was placed onto viral RNA in mutated viruses was significantly less than that placed in the wild-type virus. We also generated a mutant within the polymerase-active site of RT (D185H) (Asp-->His) that eliminated RT polymerase activity. We found that the placement of primer tRNA(3Lys) onto viral genomic RNA was independent of enzyme function; however, the tRNA(3Lys) that was placed was present in an unextended state due to the loss of RT activity. In contrast, the elimination of protease activity through a D25A (Asp-->Ala) point mutation in the protease-active site (construct BH10-PR) did cause a drop in the efficiency of tRNA(3Lys) placement. In this situation, a proportion of the placed tRNA(3Lys) was found to be extended by 2 bases, although not to the extent found with wild-type virus (BH10), due to a decrease in RT activity associated with unprocessed Gag-Pol protein that could not be cleaved because of the loss of protease activity. We also investigated the role of the primer binding site (PBS) in the placement of tRNA(3Lys) through a series of 2-, 4-, and 8-nucleotide (nt) deletions at the 3' end of the PBS, i.e., BH10-PBS2, BH10-PBS4, and BH10-PBS8, respectively. In mutated viruses BH10-PBS2 and BH10-PBS4, the 2-base-extended form of tRNA(3Lys) was still detected. However, less primer tRNA(3Lys) was placed onto viral genomic RNA as more nucleotides were deleted until the percentage of placement seen with wild-type BH10 virus dropped to only 4% in the virus with 8 nt deleted (BH10-PBS8). Consistently, these mutated viruses possessed decreased initial replication capacity compared with that of the wild-type virus, with the extent of incapacity corresponding to the size of the deletion. However, after several days, an increase in replication potential was accompanied by a reversion to a wild-type PBS.
Full Text
The Full Text of this article is available as a PDF (909.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreola M. L., Tarrago-Litvak L., Levina A. S., Kolocheva T. I., el Dirani-Diab R., Jamkovoy V. I., Khalimskaya N. L., Barr P. J., Litvak S., Nevinsky G. A. Affinity labeling and functional analysis of the primer binding domain of HIV-1 reverse transcriptase. Biochemistry. 1993 Apr 13;32(14):3629–3637. doi: 10.1021/bi00065a015. [DOI] [PubMed] [Google Scholar]
- Arts E. J., Ghosh M., Jacques P. S., Ehresmann B., Le Grice S. F. Restoration of tRNA3Lys-primed(-)-strand DNA synthesis to an HIV-1 reverse transcriptase mutant with extended tRNAs. Implications for retroviral replication. J Biol Chem. 1996 Apr 12;271(15):9054–9061. doi: 10.1074/jbc.271.15.9054. [DOI] [PubMed] [Google Scholar]
- Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970 Jun 27;226(5252):1209–1211. doi: 10.1038/2261209a0. [DOI] [PubMed] [Google Scholar]
- Barat C., Schatz O., Le Grice S., Darlix J. L. Analysis of the interactions of HIV1 replication primer tRNA(Lys,3) with nucleocapsid protein and reverse transcriptase. J Mol Biol. 1993 May 20;231(2):185–190. doi: 10.1006/jmbi.1993.1273. [DOI] [PubMed] [Google Scholar]
- Darlix J. L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995 Dec 8;254(4):523–537. doi: 10.1006/jmbi.1995.0635. [DOI] [PubMed] [Google Scholar]
- Das A. T., Berkhout B. Efficient extension of a misaligned tRNA-primer during replication of the HIV-1 retrovirus. Nucleic Acids Res. 1995 Apr 25;23(8):1319–1326. doi: 10.1093/nar/23.8.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das A. T., Klaver B., Berkhout B. Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys). J Virol. 1995 May;69(5):3090–3097. doi: 10.1128/jvi.69.5.3090-3097.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gheysen D., Jacobs E., de Foresta F., Thiriart C., Francotte M., Thines D., De Wilde M. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell. 1989 Oct 6;59(1):103–112. doi: 10.1016/0092-8674(89)90873-8. [DOI] [PubMed] [Google Scholar]
- Huang Y., Wang J., Shalom A., Li Z., Khorchid A., Wainberg M. A., Kleiman L. Primer tRNA3Lys on the viral genome exists in unextended and two-base extended forms within mature human immunodeficiency virus type 1. J Virol. 1997 Jan;71(1):726–728. doi: 10.1128/jvi.71.1.726-728.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isel C., Lanchy J. M., Le Grice S. F., Ehresmann C., Ehresmann B., Marquet R. Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys. EMBO J. 1996 Feb 15;15(4):917–924. [PMC free article] [PubMed] [Google Scholar]
- Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988 Jan 21;331(6153):280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
- Jiang M., Mak J., Huang Y., Kleiman L. Reverse transcriptase is an important factor for the primer tRNA selection in HIV-1. Leukemia. 1994 Apr;8 (Suppl 1):S149–S151. [PubMed] [Google Scholar]
- Larder B. A., Purifoy D. J., Powell K. L., Darby G. Site-specific mutagenesis of AIDS virus reverse transcriptase. 1987 Jun 25-Jul 1Nature. 327(6124):716–717. doi: 10.1038/327716a0. [DOI] [PubMed] [Google Scholar]
- Li X., Mak J., Arts E. J., Gu Z., Kleiman L., Wainberg M. A., Parniak M. A. Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication. J Virol. 1994 Oct;68(10):6198–6206. doi: 10.1128/jvi.68.10.6198-6206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X., Quan Y., Arts E. J., Li Z., Preston B. D., de Rocquigny H., Roques B. P., Darlix J. L., Kleiman L., Parniak M. A. Human immunodeficiency virus Type 1 nucleocapsid protein (NCp7) directs specific initiation of minus-strand DNA synthesis primed by human tRNA(Lys3) in vitro: studies of viral RNA molecules mutated in regions that flank the primer binding site. J Virol. 1996 Aug;70(8):4996–5004. doi: 10.1128/jvi.70.8.4996-5004.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Litvak S., Sarih-Cottin L., Fournier M., Andreola M., Tarrago-Litvak L. Priming of HIV replication by tRNA(Lys3): role of reverse transcriptase. Trends Biochem Sci. 1994 Mar;19(3):114–118. doi: 10.1016/0968-0004(94)90203-8. [DOI] [PubMed] [Google Scholar]
- Loeb D. D., Swanstrom R., Everitt L., Manchester M., Stamper S. E., Hutchison C. A., 3rd Complete mutagenesis of the HIV-1 protease. Nature. 1989 Aug 3;340(6232):397–400. doi: 10.1038/340397a0. [DOI] [PubMed] [Google Scholar]
- Mak J., Jiang M., Wainberg M. A., Hammarskjöld M. L., Rekosh D., Kleiman L. Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. J Virol. 1994 Apr;68(4):2065–2072. doi: 10.1128/jvi.68.4.2065-2072.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mak J., Khorchid A., Cao Q., Huang Y., Lowy I., Parniak M. A., Prasad V. R., Wainberg M. A., Kleiman L. Effects of mutations in Pr160gag-pol upon tRNA(Lys3) and Pr160gag-plo incorporation into HIV-1. J Mol Biol. 1997 Jan 31;265(4):419–431. doi: 10.1006/jmbi.1996.0742. [DOI] [PubMed] [Google Scholar]
- Marquet R., Isel C., Ehresmann C., Ehresmann B. tRNAs as primer of reverse transcriptases. Biochimie. 1995;77(1-2):113–124. doi: 10.1016/0300-9084(96)88114-4. [DOI] [PubMed] [Google Scholar]
- Mishima Y., Steitz J. A. Site-specific crosslinking of 4-thiouridine-modified human tRNA(3Lys) to reverse transcriptase from human immunodeficiency virus type I. EMBO J. 1995 Jun 1;14(11):2679–2687. doi: 10.1002/j.1460-2075.1995.tb07266.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oude Essink B. B., Das A. T., Berkhout B. Structural requirements for the binding of tRNA Lys3 to reverse transcriptase of the human immunodeficiency virus type 1. J Biol Chem. 1995 Oct 6;270(40):23867–23874. doi: 10.1074/jbc.270.40.23867. [DOI] [PubMed] [Google Scholar]
- Prats A. C., Sarih L., Gabus C., Litvak S., Keith G., Darlix J. L. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. EMBO J. 1988 Jun;7(6):1777–1783. doi: 10.1002/j.1460-2075.1988.tb03008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quillent C., Borman A. M., Paulous S., Dauguet C., Clavel F. Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation. Virology. 1996 May 1;219(1):29–36. doi: 10.1006/viro.1996.0219. [DOI] [PubMed] [Google Scholar]
- Richter-Cook N. J., Howard K. J., Cirino N. M., Wöhrl B. M., Le Grice S. F. Interaction of tRNA(Lys-3) with multiple forms of human immunodeficiency virus reverse transcriptase. J Biol Chem. 1992 Aug 5;267(22):15952–15957. [PubMed] [Google Scholar]
- Sarih-Cottin L., Bordier B., Musier-Forsyth K., Andreola M. L., Barr P. J., Litvak S. Preferential interaction of human immunodeficiency virus reverse transcriptase with two regions of primer tRNA(Lys) as evidenced by footprinting studies and inhibition with synthetic oligoribonucleotides. J Mol Biol. 1992 Jul 5;226(1):1–6. doi: 10.1016/0022-2836(92)90117-3. [DOI] [PubMed] [Google Scholar]
- Stewart L., Schatz G., Vogt V. M. Properties of avian retrovirus particles defective in viral protease. J Virol. 1990 Oct;64(10):5076–5092. doi: 10.1128/jvi.64.10.5076-5092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Temin H. M., Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970 Jun 27;226(5252):1211–1213. doi: 10.1038/2261211a0. [DOI] [PubMed] [Google Scholar]
- Thrall S. H., Reinstein J., Wöhrl B. M., Goody R. S. Evaluation of human immunodeficiency virus type 1 reverse transcriptase primer tRNA binding by fluorescence spectroscopy: specificity and comparison to primer/template binding. Biochemistry. 1996 Apr 9;35(14):4609–4618. doi: 10.1021/bi9526387. [DOI] [PubMed] [Google Scholar]
- Wakefield J. K., Rhim H., Morrow C. D. Minimal sequence requirements of a functional human immunodeficiency virus type 1 primer binding site. J Virol. 1994 Mar;68(3):1605–1614. doi: 10.1128/jvi.68.3.1605-1614.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakefield J. K., Wolf A. G., Morrow C. D. Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA(3Lys). J Virol. 1995 Oct;69(10):6021–6029. doi: 10.1128/jvi.69.10.6021-6029.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S., König B., Müller H. J., Seidel H., Goody R. S. Synthetic human tRNA(UUULys3) and natural bovine tRNA(UUULys3) interact with HIV-1 reverse transcriptase and serve as specific primers for retroviral cDNA synthesis. Gene. 1992 Feb 15;111(2):183–197. doi: 10.1016/0378-1119(92)90686-j. [DOI] [PubMed] [Google Scholar]
- Whitcomb J. M., Ortiz-Conde B. A., Hughes S. H. Replication of avian leukosis viruses with mutations at the primer binding site: use of alternative tRNAs as primers. J Virol. 1995 Oct;69(10):6228–6238. doi: 10.1128/jvi.69.10.6228-6238.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson W., Braddock M., Adams S. E., Rathjen P. D., Kingsman S. M., Kingsman A. J. HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell. 1988 Dec 23;55(6):1159–1169. doi: 10.1016/0092-8674(88)90260-7. [DOI] [PubMed] [Google Scholar]
- Wöhrl B. M., Ehresmann B., Keith G., Le Grice S. F. Nuclease footprinting of human immunodeficiency virus reverse transcriptase/tRNA(Lys-3) complexes. J Biol Chem. 1993 Jun 25;268(18):13617–13624. [PubMed] [Google Scholar]
- Zakharova O. D., Tarrago-Litvak L., Fournier M., Andreola M. L., Repkova M. N., Venyaminova A. G., Litvak S., Nevinsky G. A. Interaction of primer tRNA(Lys3) with the p51 subunit of human immunodeficiency virus type 1 reverse transcriptase: a possible role in enzyme activation. FEBS Lett. 1995 Mar 20;361(2-3):287–290. doi: 10.1016/0014-5793(95)00200-s. [DOI] [PubMed] [Google Scholar]
- Zakharova O. D., Tarrago-Litvak L., Maksakova G., Andréola M. L., Dufour E., Litvak S., Nevinsky G. A. High-affinity interaction of human immunodeficiency virus type-1 reverse transcriptase with partially complementary primers. Eur J Biochem. 1995 Nov 1;233(3):856–863. doi: 10.1111/j.1432-1033.1995.856_3.x. [DOI] [PubMed] [Google Scholar]