Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9087–9095. doi: 10.1128/jvi.71.12.9087-9095.1997

Analysis of the internal replication sequence indicates that there are three elements required for efficient replication of minute virus of mice minigenomes.

J Brunstein 1, C R Astell 1
PMCID: PMC230209  PMID: 9371565

Abstract

Prior analysis of minigenomes of minute virus of mice carried out by our laboratory indicated that sequences within the region of nucleotides 4489 to 4695, inboard of the 5' palindrome, are required for efficient DNA replication of the virus and are the site of specific interactions with unidentified factors present in a host cell nuclear extract (P. Tam and C. R. Astell, Virology 193:812-824, 1993; P. Tam and C. R. Astell, J. Virology 68:2840-2848, 1994). In order to examine this region in finer detail, a comprehensive library of linker-scanning mutants spanning the region was tested for the ability to support replication of minigenome constructs and for the ability to interact with host cell factors. Three short discrete sequence elements critical for replication competence were observed. Binding of host cell nuclear factors was localized to four sites, with two major complexes each appearing to have two binding sites within the region. All factor binding sites were found to be directly adjacent to or overlapping with sequence elements contributing to replication competence, and evidence suggesting a correlation between factor binding and minigenome replication is presented. A possible model is proposed for function of a viral origin within the region of the internal replication sequence which addresses the still-unresolved problem of how parvoviruses overcome the thermodynamic energy barrier involved in the rearrangement of the 5'-terminal palindrome from an extended form to a hairpin conformation.

Full Text

The Full Text of this article is available as a PDF (684.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astell C. R., Chow M. B., Ward D. C. Sequence analysis of the termini of virion and replicative forms of minute virus of mice DNA suggests a modified rolling hairpin model for autonomous parvovirus DNA replication. J Virol. 1985 Apr;54(1):171–177. doi: 10.1128/jvi.54.1.171-177.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Astell C. R., Liu Q., Harris C. E., Brunstein J., Jindal H. K., Tam P. Minute virus of mice cis-acting sequences required for genome replication and the role of the trans-acting viral protein, NS-1. Prog Nucleic Acid Res Mol Biol. 1996;55:245–285. doi: 10.1016/s0079-6603(08)60196-8. [DOI] [PubMed] [Google Scholar]
  3. Baldauf A. Q., Willwand K., Mumtsidu E., Nüesch J. P., Rommelaere J. Specific initiation of replication at the right-end telomere of the closed species of minute virus of mice replicative-form DNA. J Virol. 1997 Feb;71(2):971–980. doi: 10.1128/jvi.71.2.971-980.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bohenzky R. A., LeFebvre R. B., Berns K. I. Sequence and symmetry requirements within the internal palindromic sequences of the adeno-associated virus terminal repeat. Virology. 1988 Oct;166(2):316–327. doi: 10.1016/0042-6822(88)90502-8. [DOI] [PubMed] [Google Scholar]
  5. Chen K. C., Tyson J. J., Lederman M., Stout E. R., Bates R. C. A kinetic hairpin transfer model for parvoviral DNA replication. J Mol Biol. 1989 Jul 20;208(2):283–296. doi: 10.1016/0022-2836(89)90389-6. [DOI] [PubMed] [Google Scholar]
  6. Cossons N., Faust E. A., Zannis-Hadjopoulos M. DNA polymerase delta-dependent formation of a hairpin structure at the 5' terminal palindrome of the minute virus of mice genome. Virology. 1996 Feb 1;216(1):258–264. doi: 10.1006/viro.1996.0058. [DOI] [PubMed] [Google Scholar]
  7. Cotmore S. F., Tattersall P. The autonomously replicating parvoviruses of vertebrates. Adv Virus Res. 1987;33:91–174. doi: 10.1016/s0065-3527(08)60317-6. [DOI] [PubMed] [Google Scholar]
  8. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  9. Hirsch M. R., Gaugler L., Deagostini-Bazin H., Bally-Cuif L., Goridis C. Identification of positive and negative regulatory elements governing cell-type-specific expression of the neural cell adhesion molecule gene. Mol Cell Biol. 1990 May;10(5):1959–1968. doi: 10.1128/mcb.10.5.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  11. Kollek R., Goulian M. Synthesis of parvovirus H-1 replicative form from viral DNA by DNA polymerase gamma. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6206–6210. doi: 10.1073/pnas.78.10.6206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kollek R., Tseng B. Y., Goulian M. DNA polymerase requirements for parvovirus H-1 DNA replication in vitro. J Virol. 1982 Mar;41(3):982–989. doi: 10.1128/jvi.41.3.982-989.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LITTLEFIELD J. W. THREE DEGREES OF GUANYLIC ACID--INOSINIC ACID PYROPHOSPHORYLASE DEFICIENCY IN MOUSE FIBROBLASTS. Nature. 1964 Sep 12;203:1142–1144. doi: 10.1038/2031142a0. [DOI] [PubMed] [Google Scholar]
  14. Liu Q., Yong C. B., Astell C. R. In vitro resolution of the dimer bridge of the minute virus of mice (MVM) genome supports the modified rolling hairpin model for MVM replication. Virology. 1994 Jun;201(2):251–262. doi: 10.1006/viro.1994.1290. [DOI] [PubMed] [Google Scholar]
  15. Maniloff J. Thermodynamic considerations of the deoxyribonucleic acid helix-cruciform transition. J Theor Biol. 1975 Sep;53(2):497–501. doi: 10.1016/s0022-5193(75)80019-1. [DOI] [PubMed] [Google Scholar]
  16. Marahrens Y., Stillman B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science. 1992 Feb 14;255(5046):817–823. doi: 10.1126/science.1536007. [DOI] [PubMed] [Google Scholar]
  17. Rhode S. L., 3rd, Klaassen B. DNA sequence of the 5' terminus containing the replication origin of parvovirus replicative form DNA. J Virol. 1982 Mar;41(3):990–999. doi: 10.1128/jvi.41.3.990-999.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Russell J., Botchan M. R. cis-Acting components of human papillomavirus (HPV) DNA replication: linker substitution analysis of the HPV type 11 origin. J Virol. 1995 Feb;69(2):651–660. doi: 10.1128/jvi.69.2.651-660.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tam P., Astell C. R. Multiple cellular factors bind to cis-regulatory elements found inboard of the 5' palindrome of minute virus of mice. J Virol. 1994 May;68(5):2840–2848. doi: 10.1128/jvi.68.5.2840-2848.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tam P., Astell C. R. Replication of minute virus of mice minigenomes: novel replication elements required for MVM DNA replication. Virology. 1993 Apr;193(2):812–824. doi: 10.1006/viro.1993.1190. [DOI] [PubMed] [Google Scholar]
  21. Waga S., Stillman B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature. 1994 May 19;369(6477):207–212. doi: 10.1038/369207a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES